Welcome to Subscribe On Youtube
Question
Formatted question description: https://leetcode.ca/all/396.html
You are given an integer array nums
of length n
.
Assume arrk
to be an array obtained by rotating nums
by k
positions clock-wise. We define the rotation function F
on nums
as follow:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1].
Return the maximum value of F(0), F(1), ..., F(n-1)
.
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: nums = [4,3,2,6] Output: 26 Explanation: F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Example 2:
Input: nums = [100] Output: 0
Constraints:
n == nums.length
1 <= n <= 105
-100 <= nums[i] <= 100
Algorithm
Abstract the concrete numbers as A, B, C, D, then we can get:
F(0) = 0A + 1B + 2C +3D
F(1) = 0D + 1A + 2B +3C
F(2) = 0C + 1D + 2A +3B
F(3) = 0B + 1C + 2D +3A
Then, through careful observation, we can draw the following law:
sum = 1A + 1B + 1C + 1D
F(1) = F(0) + sum-4D
F(2) = F(1) + sum-4C
F(3) = F(2) + sum-4B
Then we have found the rule, F(i) = F(i-1) + sum - n*A[n-i]
Code
-
public class Rotate_Function { class Solution { public int maxRotateFunction(int[] A) { int prevValue = 0; int sum = 0; int n = A.length; for (int i = 0; i < n; ++i) { sum += A[i]; // get: 1A+1B+1C+1D+... prevValue += i * A[i]; // get: F(0) first } int result = prevValue; for (int i = 1; i < n; i++) { // start from index=1 prevValue = prevValue + sum - n * A[n - i]; result = Math.max(result, prevValue); } return result; } } } ############ class Solution { public int maxRotateFunction(int[] nums) { int f = 0; int s = 0; int n = nums.length; for (int i = 0; i < n; ++i) { f += i * nums[i]; s += nums[i]; } int ans = f; for (int i = 1; i < n; ++i) { f = f + s - n * nums[n - i]; ans = Math.max(ans, f); } return ans; } }
-
// OJ: https://leetcode.com/problems/rotate-function/ // Time: O(N) // Space: O(1) class Solution { public: int maxRotateFunction(vector<int>& A) { if (A.empty()) return 0; long long f = 0, ans = INT_MIN, N = A.size(), sum = accumulate(A.begin(), A.end(), (long long)0); for (int i = 0; i < N; ++i) f += i * A[i]; for (int i = N - 1; i >= 0; --i) ans = max(ans, f += (sum - N * A[i])); return ans; } };
-
class Solution: def maxRotateFunction(self, nums: List[int]) -> int: f = sum(i * v for i, v in enumerate(nums)) n, s = len(nums), sum(nums) ans = f for i in range(1, n): # starting at 1, not 0 which is f f = f + s - n * nums[n - i] ans = max(ans, f) return ans ############ class Solution(object): def maxRotateFunction(self, A): """ :type A: List[int] :rtype: int """ if not A: return 0 sumA = sum(A) fk = 0 n = len(A) for i, num in enumerate(A): fk += i * num idx = n - 1 ans = float("-inf") for _ in range(n): fk += sumA - n * A[idx] ans = max(ans, fk) idx -= 1 return ans
-
func maxRotateFunction(nums []int) int { f, s, n := 0, 0, len(nums) for i, v := range nums { f += i * v s += v } ans := f for i := 1; i < n; i++ { f = f + s - n*nums[n-i] if ans < f { ans = f } } return ans }
-
function maxRotateFunction(nums: number[]): number { const n = nums.length; const sum = nums.reduce((r, v) => r + v); let res = nums.reduce((r, v, i) => r + v * i, 0); let pre = res; for (let i = 1; i < n; i++) { pre = pre - (sum - nums[i - 1]) + nums[i - 1] * (n - 1); res = Math.max(res, pre); } return res; }
-
impl Solution { pub fn max_rotate_function(nums: Vec<i32>) -> i32 { let n = nums.len(); let sum: i32 = nums.iter().sum(); let mut pre: i32 = nums.iter().enumerate().map(|(i, &v)| i as i32 * v).sum(); (0..n) .map(|i| { let res = pre; pre = pre - (sum - nums[i]) + nums[i] * (n - 1) as i32; res }) .max() .unwrap_or(0) } }