Welcome to Subscribe On Youtube

Question

Formatted question description: https://leetcode.ca/all/396.html

You are given an integer array nums of length n.

Assume arrk to be an array obtained by rotating nums by k positions clock-wise. We define the rotation function F on nums as follow:

  • F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1].

Return the maximum value of F(0), F(1), ..., F(n-1).

The test cases are generated so that the answer fits in a 32-bit integer.

 

Example 1:

Input: nums = [4,3,2,6]
Output: 26
Explanation:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

Example 2:

Input: nums = [100]
Output: 0

 

Constraints:

  • n == nums.length
  • 1 <= n <= 105
  • -100 <= nums[i] <= 100

Algorithm

Abstract the concrete numbers as A, B, C, D, then we can get:

F(0) = 0A + 1B + 2C +3D

F(1) = 0D + 1A + 2B +3C

F(2) = 0C + 1D + 2A +3B

F(3) = 0B + 1C + 2D +3A

Then, through careful observation, we can draw the following law:

sum = 1A + 1B + 1C + 1D

F(1) = F(0) + sum-4D

F(2) = F(1) + sum-4C

F(3) = F(2) + sum-4B

Then we have found the rule, F(i) = F(i-1) + sum - n*A[n-i]

Code

  • 
    public class Rotate_Function {
    
        class Solution {
            public int maxRotateFunction(int[] A) {
                int prevValue = 0;
                int sum = 0;
                int n = A.length;
    
                for (int i = 0; i < n; ++i) {
                    sum += A[i]; // get: 1A+1B+1C+1D+...
                    prevValue += i * A[i]; // get: F(0) first
                }
    
                int result = prevValue;
                for (int i = 1; i < n; i++) { // start from index=1
                    prevValue = prevValue + sum - n * A[n - i];
                    result = Math.max(result, prevValue);
                }
    
                return result;
            }
        }
    }
    
    ############
    
    class Solution {
        public int maxRotateFunction(int[] nums) {
            int f = 0;
            int s = 0;
            int n = nums.length;
            for (int i = 0; i < n; ++i) {
                f += i * nums[i];
                s += nums[i];
            }
            int ans = f;
            for (int i = 1; i < n; ++i) {
                f = f + s - n * nums[n - i];
                ans = Math.max(ans, f);
            }
            return ans;
        }
    }
    
  • // OJ: https://leetcode.com/problems/rotate-function/
    // Time: O(N)
    // Space: O(1)
    class Solution {
    public:
        int maxRotateFunction(vector<int>& A) {
            if (A.empty()) return 0;
            long long f = 0, ans = INT_MIN, N = A.size(), sum = accumulate(A.begin(), A.end(), (long long)0);
            for (int i = 0; i < N; ++i) f += i * A[i];
            for (int i = N - 1; i >= 0; --i) ans = max(ans, f += (sum - N * A[i]));
            return ans;
        }
    };
    
  • class Solution:
        def maxRotateFunction(self, nums: List[int]) -> int:
            f = sum(i * v for i, v in enumerate(nums))
            n, s = len(nums), sum(nums)
            ans = f
            for i in range(1, n): # starting at 1, not 0 which is f
                f = f + s - n * nums[n - i]
                ans = max(ans, f)
            return ans
    
    ############
    
    class Solution(object):
      def maxRotateFunction(self, A):
        """
        :type A: List[int]
        :rtype: int
        """
        if not A:
          return 0
    
        sumA = sum(A)
        fk = 0
        n = len(A)
        for i, num in enumerate(A):
          fk += i * num
        idx = n - 1
        ans = float("-inf")
        for _ in range(n):
          fk += sumA - n * A[idx]
          ans = max(ans, fk)
          idx -= 1
        return ans
    
    
  • func maxRotateFunction(nums []int) int {
    	f, s, n := 0, 0, len(nums)
    	for i, v := range nums {
    		f += i * v
    		s += v
    	}
    	ans := f
    	for i := 1; i < n; i++ {
    		f = f + s - n*nums[n-i]
    		if ans < f {
    			ans = f
    		}
    	}
    	return ans
    }
    
  • function maxRotateFunction(nums: number[]): number {
        const n = nums.length;
        const sum = nums.reduce((r, v) => r + v);
        let res = nums.reduce((r, v, i) => r + v * i, 0);
        let pre = res;
        for (let i = 1; i < n; i++) {
            pre = pre - (sum - nums[i - 1]) + nums[i - 1] * (n - 1);
            res = Math.max(res, pre);
        }
        return res;
    }
    
    
  • impl Solution {
        pub fn max_rotate_function(nums: Vec<i32>) -> i32 {
            let n = nums.len();
            let sum: i32 = nums.iter().sum();
            let mut pre: i32 = nums.iter().enumerate().map(|(i, &v)| i as i32 * v).sum();
            (0..n)
                .map(|i| {
                    let res = pre;
                    pre = pre - (sum - nums[i]) + nums[i] * (n - 1) as i32;
                    res
                })
                .max()
                .unwrap_or(0)
        }
    }
    
    

All Problems

All Solutions