Welcome to Subscribe On Youtube
343. Integer Break
Description
Given an integer n
, break it into the sum of k
positive integers, where k >= 2
, and maximize the product of those integers.
Return the maximum product you can get.
Example 1:
Input: n = 2 Output: 1 Explanation: 2 = 1 + 1, 1 × 1 = 1.
Example 2:
Input: n = 10 Output: 36 Explanation: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36.
Constraints:
2 <= n <= 58
Solutions
Dynamic programming.
-
class Solution { public int integerBreak(int n) { if (n < 4) { return n - 1; } if (n % 3 == 0) { return (int) Math.pow(3, n / 3); } if (n % 3 == 1) { return (int) Math.pow(3, n / 3 - 1) * 4; } return (int) Math.pow(3, n / 3) * 2; } }
-
class Solution { public: int integerBreak(int n) { if (n < 4) { return n - 1; } if (n % 3 == 0) { return pow(3, n / 3); } if (n % 3 == 1) { return pow(3, n / 3 - 1) * 4; } return pow(3, n / 3) * 2; } };
-
class Solution: def integerBreak(self, n: int) -> int: if n < 4: return n - 1 if n % 3 == 0: return pow(3, n // 3) if n % 3 == 1: return pow(3, n // 3 - 1) * 4 return pow(3, n // 3) * 2
-
func integerBreak(n int) int { if n < 4 { return n - 1 } if n%3 == 0 { return int(math.Pow(3, float64(n/3))) } if n%3 == 1 { return int(math.Pow(3, float64(n/3-1))) * 4 } return int(math.Pow(3, float64(n/3))) * 2 }
-
function integerBreak(n: number): number { if (n < 4) { return n - 1; } const m = Math.floor(n / 3); if (n % 3 == 0) { return 3 ** m; } if (n % 3 == 1) { return 3 ** (m - 1) * 4; } return 3 ** m * 2; }
-
impl Solution { pub fn integer_break(n: i32) -> i32 { if n < 4 { return n - 1; } let count = (n - 2) / 3; (3i32).pow(count as u32) * (n - count * 3) } }
-
/** * @param {number} n * @return {number} */ var integerBreak = function (n) { const f = Array(n + 1).fill(1); for (let i = 2; i <= n; ++i) { for (let j = 1; j < i; ++j) { f[i] = Math.max(f[i], f[i - j] * j, (i - j) * j); } } return f[n]; };
-
public class Solution { public int IntegerBreak(int n) { int[] f = new int[n + 1]; f[1] = 1; for (int i = 2; i <= n; ++i) { for (int j = 1; j < i; ++j) { f[i] = Math.Max(Math.Max(f[i], f[i - j] * j), (i - j) * j); } } return f[n]; } }