Welcome to Subscribe On Youtube

329. Longest Increasing Path in a Matrix

Description

Given an m x n integers matrix, return the length of the longest increasing path in matrix.

From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).

 

Example 1:

Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].

Example 2:

Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Example 3:

Input: matrix = [[1]]
Output: 1

 

Constraints:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 0 <= matrix[i][j] <= 231 - 1

Solutions

  • class Solution {
        private int m;
        private int n;
        private int[][] matrix;
        private int[][] f;
    
        public int longestIncreasingPath(int[][] matrix) {
            m = matrix.length;
            n = matrix[0].length;
            f = new int[m][n];
            this.matrix = matrix;
            int ans = 0;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    ans = Math.max(ans, dfs(i, j));
                }
            }
            return ans;
        }
    
        private int dfs(int i, int j) {
            if (f[i][j] != 0) {
                return f[i][j];
            }
            int[] dirs = {-1, 0, 1, 0, -1};
            for (int k = 0; k < 4; ++k) {
                int x = i + dirs[k];
                int y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
                    f[i][j] = Math.max(f[i][j], dfs(x, y));
                }
            }
            return ++f[i][j];
        }
    }
    
  • class Solution {
    public:
        int longestIncreasingPath(vector<vector<int>>& matrix) {
            int m = matrix.size(), n = matrix[0].size();
            int f[m][n];
            memset(f, 0, sizeof(f));
            int ans = 0;
            int dirs[5] = {-1, 0, 1, 0, -1};
    
            function<int(int, int)> dfs = [&](int i, int j) -> int {
                if (f[i][j]) {
                    return f[i][j];
                }
                for (int k = 0; k < 4; ++k) {
                    int x = i + dirs[k], y = j + dirs[k + 1];
                    if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
                        f[i][j] = max(f[i][j], dfs(x, y));
                    }
                }
                return ++f[i][j];
            };
    
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    ans = max(ans, dfs(i, j));
                }
            }
            return ans;
        }
    };
    
  • class Solution:
        def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
            @cache
            def dfs(i: int, j: int) -> int:
                ans = 0
                for a, b in pairwise((-1, 0, 1, 0, -1)):
                    x, y = i + a, j + b
                    if 0 <= x < m and 0 <= y < n and matrix[x][y] > matrix[i][j]:
                        ans = max(ans, dfs(x, y))
                return ans + 1
    
            m, n = len(matrix), len(matrix[0])
            return max(dfs(i, j) for i in range(m) for j in range(n))
    
    
  • func longestIncreasingPath(matrix [][]int) (ans int) {
    	m, n := len(matrix), len(matrix[0])
    	f := make([][]int, m)
    	for i := range f {
    		f[i] = make([]int, n)
    	}
    	dirs := [5]int{-1, 0, 1, 0, -1}
    	var dfs func(i, j int) int
    	dfs = func(i, j int) int {
    		if f[i][j] != 0 {
    			return f[i][j]
    		}
    		for k := 0; k < 4; k++ {
    			x, y := i+dirs[k], j+dirs[k+1]
    			if 0 <= x && x < m && 0 <= y && y < n && matrix[x][y] > matrix[i][j] {
    				f[i][j] = max(f[i][j], dfs(x, y))
    			}
    		}
    		f[i][j]++
    		return f[i][j]
    	}
    	for i := 0; i < m; i++ {
    		for j := 0; j < n; j++ {
    			ans = max(ans, dfs(i, j))
    		}
    	}
    	return
    }
    
  • function longestIncreasingPath(matrix: number[][]): number {
        const m = matrix.length;
        const n = matrix[0].length;
        const f: number[][] = Array(m)
            .fill(0)
            .map(() => Array(n).fill(0));
        const dirs = [-1, 0, 1, 0, -1];
        const dfs = (i: number, j: number): number => {
            if (f[i][j] > 0) {
                return f[i][j];
            }
            for (let k = 0; k < 4; ++k) {
                const x = i + dirs[k];
                const y = j + dirs[k + 1];
                if (x >= 0 && x < m && y >= 0 && y < n && matrix[x][y] > matrix[i][j]) {
                    f[i][j] = Math.max(f[i][j], dfs(x, y));
                }
            }
            return ++f[i][j];
        };
        let ans = 0;
        for (let i = 0; i < m; ++i) {
            for (let j = 0; j < n; ++j) {
                ans = Math.max(ans, dfs(i, j));
            }
        }
        return ans;
    }
    
    

All Problems

All Solutions