Welcome to Subscribe On Youtube
308. Range Sum Query 2D - Mutable
Description
Given a 2D matrix matrix
, handle multiple queries of the following types:
- Update the value of a cell in
matrix
. - Calculate the sum of the elements of
matrix
inside the rectangle defined by its upper left corner(row1, col1)
and lower right corner(row2, col2)
.
Implement the NumMatrix class:
NumMatrix(int[][] matrix)
Initializes the object with the integer matrixmatrix
.void update(int row, int col, int val)
Updates the value ofmatrix[row][col]
to beval
.int sumRegion(int row1, int col1, int row2, int col2)
Returns the sum of the elements ofmatrix
inside the rectangle defined by its upper left corner(row1, col1)
and lower right corner(row2, col2)
.
Example 1:
Input ["NumMatrix", "sumRegion", "update", "sumRegion"] [[[[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]], [2, 1, 4, 3], [3, 2, 2], [2, 1, 4, 3]] Output [null, 8, null, 10] Explanation NumMatrix numMatrix = new NumMatrix([[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]); numMatrix.sumRegion(2, 1, 4, 3); // return 8 (i.e. sum of the left red rectangle) numMatrix.update(3, 2, 2); // matrix changes from left image to right image numMatrix.sumRegion(2, 1, 4, 3); // return 10 (i.e. sum of the right red rectangle)
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-1000 <= matrix[i][j] <= 1000
0 <= row < m
0 <= col < n
-1000 <= val <= 1000
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
- At most
5000
calls will be made tosumRegion
andupdate
.
Solutions
Binary Indexed Tree or Segment Tree.
In the class NumMatrix
, maintain the original matrix matrix
and maintain another 2D array rowSums
that has the same size as matrix
and stores the sums of the elements to the left in the same row. Concretely, rowSums[i][j]
is the sum of all elements from matrix[i][0]
to matrix[i][j]
. Also maintain rows
and columns
of matrix
as well.
For the constructor, initialize the original matrix matrix
, the 2D array rowSums
, and rows
and columns
.
For update
, calculate difference = val - matrix[row][column]
, update matrix[row][col] = val
, and for col <= i < columns
, update rowSums[row][i] += difference
.
For sumRegion
, if row1 > row2
or col1 > col2
, then the region is invalid, so return 0. Otherwise, for each row from row1
to row2
, calculate the sum of elements from column col1
to column col2
. The sum in row row
and columns range [col1, col2]
is calculated as rowSums[row][col2]
for col1 == 0
, or rowSums[row][col2] - rowSums[row][col1 - 1]
for col1 > 0
.
-
class BinaryIndexedTree { private int n; private int[] c; public BinaryIndexedTree(int n) { this.n = n; c = new int[n + 1]; } public void update(int x, int delta) { while (x <= n) { c[x] += delta; x += lowbit(x); } } public int query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= lowbit(x); } return s; } public static int lowbit(int x) { return x & -x; } } class NumMatrix { private BinaryIndexedTree[] trees; public NumMatrix(int[][] matrix) { int m = matrix.length; int n = matrix[0].length; trees = new BinaryIndexedTree[m]; for (int i = 0; i < m; ++i) { BinaryIndexedTree tree = new BinaryIndexedTree(n); for (int j = 0; j < n; ++j) { tree.update(j + 1, matrix[i][j]); } trees[i] = tree; } } public void update(int row, int col, int val) { BinaryIndexedTree tree = trees[row]; int prev = tree.query(col + 1) - tree.query(col); tree.update(col + 1, val - prev); } public int sumRegion(int row1, int col1, int row2, int col2) { int s = 0; for (int i = row1; i <= row2; ++i) { BinaryIndexedTree tree = trees[i]; s += tree.query(col2 + 1) - tree.query(col1); } return s; } } /** * Your NumMatrix object will be instantiated and called as such: * NumMatrix obj = new NumMatrix(matrix); * obj.update(row,col,val); * int param_2 = obj.sumRegion(row1,col1,row2,col2); */
-
class BinaryIndexedTree { public: int n; vector<int> c; BinaryIndexedTree(int _n) : n(_n) , c(_n + 1) {} void update(int x, int delta) { while (x <= n) { c[x] += delta; x += lowbit(x); } } int query(int x) { int s = 0; while (x > 0) { s += c[x]; x -= lowbit(x); } return s; } int lowbit(int x) { return x & -x; } }; class NumMatrix { public: vector<BinaryIndexedTree*> trees; NumMatrix(vector<vector<int>>& matrix) { int m = matrix.size(); int n = matrix[0].size(); trees.resize(m); for (int i = 0; i < m; ++i) { BinaryIndexedTree* tree = new BinaryIndexedTree(n); for (int j = 0; j < n; ++j) tree->update(j + 1, matrix[i][j]); trees[i] = tree; } } void update(int row, int col, int val) { BinaryIndexedTree* tree = trees[row]; int prev = tree->query(col + 1) - tree->query(col); tree->update(col + 1, val - prev); } int sumRegion(int row1, int col1, int row2, int col2) { int s = 0; for (int i = row1; i <= row2; ++i) { BinaryIndexedTree* tree = trees[i]; s += tree->query(col2 + 1) - tree->query(col1); } return s; } }; /** * Your NumMatrix object will be instantiated and called as such: * NumMatrix* obj = new NumMatrix(matrix); * obj->update(row,col,val); * int param_2 = obj->sumRegion(row1,col1,row2,col2); */
-
# segment tree class Node: def __init__(self): self.l = 0 self.r = 0 self.v = 0 class SegmentTree: def __init__(self, nums): n = len(nums) self.nums = nums self.tr = [Node() for _ in range(4 * n)] self.build(1, 1, n) def build(self, u, l, r): self.tr[u].l = l self.tr[u].r = r if l == r: self.tr[u].v = self.nums[l - 1] return mid = (l + r) >> 1 self.build(u << 1, l, mid) self.build(u << 1 | 1, mid + 1, r) self.pushup(u) def modify(self, u, x, v): if self.tr[u].l == x and self.tr[u].r == x: self.tr[u].v = v return mid = (self.tr[u].l + self.tr[u].r) >> 1 if x <= mid: self.modify(u << 1, x, v) else: self.modify(u << 1 | 1, x, v) self.pushup(u) def query(self, u, l, r): if self.tr[u].l >= l and self.tr[u].r <= r: return self.tr[u].v mid = (self.tr[u].l + self.tr[u].r) >> 1 v = 0 if l <= mid: v += self.query(u << 1, l, r) if r > mid: v += self.query(u << 1 | 1, l, r) return v def pushup(self, u): self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v class NumMatrix: def __init__(self, matrix: List[List[int]]): self.trees = [SegmentTree(row) for row in matrix] def update(self, row: int, col: int, val: int) -> None: tree = self.trees[row] tree.modify(1, col + 1, val) def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: return sum(self.trees[row].query(1, col1 + 1, col2 + 1) for row in range(row1, row2 + 1)) # Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # obj.update(row,col,val) # param_2 = obj.sumRegion(row1,col1,row2,col2) ############ ''' It uses a binary indexed tree (BIT) or Fenwick tree to efficiently update and query sums of submatrices. The NumMatrix class constructor initializes the BIT and matrix data structure. The update method updates the matrix and BIT with the difference in values. The sumRegion method computes the sum of a submatrix using prefix sums computed with the BIT. The sum method computes a prefix sum in the BIT. "Fenwick tree" vs "Segment tree" https://stackoverflow.com/questions/64190332/fenwick-tree-vs-segment-tree ''' class NumMatrix: def __init__(self, matrix: List[List[int]]): if not matrix or not matrix[0]: self.m, self.n = 0, 0 return self.m, self.n = len(matrix), len(matrix[0]) self.bit = [[0] * (self.n + 1) for _ in range(self.m + 1)] self.matrix = [[0] * self.n for _ in range(self.m)] for i in range(self.m): for j in range(self.n): self.update(i, j, matrix[i][j]) def update(self, row: int, col: int, val: int) -> None: diff = val - self.matrix[row][col] self.matrix[row][col] = val i = row + 1 while i <= self.m: j = col + 1 while j <= self.n: self.bit[i][j] += diff j += j & -j i += i & -i def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: return self.sum(row2 + 1, col2 + 1) - self.sum(row2 + 1, col1) - self.sum(row1, col2 + 1) + self.sum(row1, col1) def sum(self, row: int, col: int) -> int: res = 0 i = row while i > 0: j = col while j > 0: res += self.bit[i][j] j -= j & -j i -= i & -i return res
-
type BinaryIndexedTree struct { n int c []int } func newBinaryIndexedTree(n int) *BinaryIndexedTree { c := make([]int, n+1) return &BinaryIndexedTree{n, c} } func (this *BinaryIndexedTree) lowbit(x int) int { return x & -x } func (this *BinaryIndexedTree) update(x, delta int) { for x <= this.n { this.c[x] += delta x += this.lowbit(x) } } func (this *BinaryIndexedTree) query(x int) int { s := 0 for x > 0 { s += this.c[x] x -= this.lowbit(x) } return s } type NumMatrix struct { trees []*BinaryIndexedTree } func Constructor(matrix [][]int) NumMatrix { n := len(matrix[0]) var trees []*BinaryIndexedTree for _, row := range matrix { tree := newBinaryIndexedTree(n) for j, v := range row { tree.update(j+1, v) } trees = append(trees, tree) } return NumMatrix{trees} } func (this *NumMatrix) Update(row int, col int, val int) { tree := this.trees[row] prev := tree.query(col+1) - tree.query(col) tree.update(col+1, val-prev) } func (this *NumMatrix) SumRegion(row1 int, col1 int, row2 int, col2 int) int { s := 0 for i := row1; i <= row2; i++ { tree := this.trees[i] s += tree.query(col2+1) - tree.query(col1) } return s } /** * Your NumMatrix object will be instantiated and called as such: * obj := Constructor(matrix); * obj.Update(row,col,val); * param_2 := obj.SumRegion(row1,col1,row2,col2); */