Welcome to Subscribe On Youtube

268. Missing Number

Description

Given an array nums containing n distinct numbers in the range [0, n], return the only number in the range that is missing from the array.

 

Example 1:

Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.

Example 2:

Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.

Example 3:

Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.

 

Constraints:

  • n == nums.length
  • 1 <= n <= 104
  • 0 <= nums[i] <= n
  • All the numbers of nums are unique.

 

Follow up: Could you implement a solution using only O(1) extra space complexity and O(n) runtime complexity?

Solutions

Solution 1: Bitwise Operation

The XOR operation has the following properties:

  • Any number XOR 0 is still the original number, i.e., $x \oplus 0 = x$;
  • Any number XOR itself is 0, i.e., $x \oplus x = 0$;

Therefore, we can traverse the array, perform XOR operation between each element and the numbers $[0,..n]$, and the final result will be the missing number.

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.

Solution 2: Mathematics

We can also solve this problem using mathematics. By calculating the sum of $[0,..n]$, subtracting the sum of all numbers in the array, we can obtain the missing number.

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.

  • class Solution {
        public int missingNumber(int[] nums) {
            int n = nums.length;
            int ans = n;
            for (int i = 0; i < n; ++i) {
                ans ^= (i ^ nums[i]);
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int missingNumber(vector<int>& nums) {
            int n = nums.size();
            int ans = n;
            for (int i = 0; i < n; ++i) {
                ans ^= (i ^ nums[i]);
            }
            return ans;
        }
    };
    
  • class Solution:
        def missingNumber(self, nums: List[int]) -> int:
            return reduce(xor, (i ^ v for i, v in enumerate(nums, 1)))
    
    
  • func missingNumber(nums []int) (ans int) {
    	n := len(nums)
    	ans = n
    	for i, v := range nums {
    		ans ^= (i ^ v)
    	}
    	return
    }
    
  • function missingNumber(nums: number[]): number {
        const n = nums.length;
        let ans = n;
        for (let i = 0; i < n; ++i) {
            ans ^= i ^ nums[i];
        }
        return ans;
    }
    
    
  • /**
     * @param {number[]} nums
     * @return {number}
     */
    var missingNumber = function (nums) {
        const n = nums.length;
        let ans = n;
        for (let i = 0; i < n; ++i) {
            ans ^= i ^ nums[i];
        }
        return ans;
    };
    
    
  • class Solution {
        /**
         * @param Integer[] $nums
         * @return Integer
         */
        function missingNumber($nums) {
            $n = count($nums);
            $sumN = (($n + 1) * $n) / 2;
            for ($i = 0; $i < $n; $i++) {
                $sumN -= $nums[$i];
            }
            return $sumN;
        }
    }
    
  • impl Solution {
        pub fn missing_number(nums: Vec<i32>) -> i32 {
            let n = nums.len() as i32;
            let mut ans = n;
            for (i, v) in nums.iter().enumerate() {
                ans ^= (i as i32) ^ v;
            }
            ans
        }
    }
    
    

All Problems

All Solutions