Welcome to Subscribe On Youtube

233. Number of Digit One

Description

Given an integer n, count the total number of digit 1 appearing in all non-negative integers less than or equal to n.

 

Example 1:

Input: n = 13
Output: 6

Example 2:

Input: n = 0
Output: 0

 

Constraints:

  • 0 <= n <= 109

Solutions

simple digital dp problem (or it can be solved by finding a rule)

  • class Solution {
        private int[] a = new int[12];
        private int[][] dp = new int[12][12];
    
        public int countDigitOne(int n) {
            int len = 0;
            while (n > 0) {
                a[++len] = n % 10;
                n /= 10;
            }
            for (var e : dp) {
                Arrays.fill(e, -1);
            }
            return dfs(len, 0, true);
        }
    
        private int dfs(int pos, int cnt, boolean limit) {
            if (pos <= 0) {
                return cnt;
            }
            if (!limit && dp[pos][cnt] != -1) {
                return dp[pos][cnt];
            }
            int up = limit ? a[pos] : 9;
            int ans = 0;
            for (int i = 0; i <= up; ++i) {
                ans += dfs(pos - 1, cnt + (i == 1 ? 1 : 0), limit && i == up);
            }
            if (!limit) {
                dp[pos][cnt] = ans;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int a[12];
        int dp[12][12];
    
        int countDigitOne(int n) {
            int len = 0;
            while (n) {
                a[++len] = n % 10;
                n /= 10;
            }
            memset(dp, -1, sizeof dp);
            return dfs(len, 0, true);
        }
    
        int dfs(int pos, int cnt, bool limit) {
            if (pos <= 0) {
                return cnt;
            }
            if (!limit && dp[pos][cnt] != -1) {
                return dp[pos][cnt];
            }
            int ans = 0;
            int up = limit ? a[pos] : 9;
            for (int i = 0; i <= up; ++i) {
                ans += dfs(pos - 1, cnt + (i == 1), limit && i == up);
            }
            if (!limit) {
                dp[pos][cnt] = ans;
            }
            return ans;
        }
    };
    
  • class Solution:
        def countDigitOne(self, n: int) -> int:
            @cache
            def dfs(pos, cnt, limit):
                if pos <= 0:
                    return cnt
                up = a[pos] if limit else 9
                ans = 0
                for i in range(up + 1):
                    ans += dfs(pos - 1, cnt + (i == 1), limit and i == up)
                return ans
    
            a = [0] * 12
            l = 1
            while n:
                a[l] = n % 10
                n //= 10
                l += 1
            return dfs(l, 0, True)
    
    
  • func countDigitOne(n int) int {
    	a := make([]int, 12)
    	dp := make([][]int, 12)
    	for i := range dp {
    		dp[i] = make([]int, 12)
    		for j := range dp[i] {
    			dp[i][j] = -1
    		}
    	}
    	l := 0
    	for n > 0 {
    		l++
    		a[l] = n % 10
    		n /= 10
    	}
    	var dfs func(int, int, bool) int
    	dfs = func(pos, cnt int, limit bool) int {
    		if pos <= 0 {
    			return cnt
    		}
    		if !limit && dp[pos][cnt] != -1 {
    			return dp[pos][cnt]
    		}
    		up := 9
    		if limit {
    			up = a[pos]
    		}
    		ans := 0
    		for i := 0; i <= up; i++ {
    			t := cnt
    			if i == 1 {
    				t++
    			}
    			ans += dfs(pos-1, t, limit && i == up)
    		}
    		if !limit {
    			dp[pos][cnt] = ans
    		}
    		return ans
    	}
    	return dfs(l, 0, true)
    }
    
  • public class Solution {
        public int CountDigitOne(int n) {
            if (n <= 0) return 0;
            if (n < 10) return 1;
            return CountDigitOne(n / 10 - 1) * 10 + n / 10 + CountDigitOneOfN(n / 10) * (n % 10 + 1) + (n % 10 >= 1 ? 1 : 0);
        }
        
        private int CountDigitOneOfN(int n) {
            var count = 0;
            while (n > 0)
            {
                if (n % 10 == 1) ++count;
                n /= 10;
            }
            return count;
        }
    }
    
  • function countDigitOne(n: number): number {
        const s = n.toString();
        const m = s.length;
        const f: number[][] = Array.from({ length: m }, () => Array(m).fill(-1));
        const dfs = (i: number, cnt: number, limit: boolean): number => {
            if (i >= m) {
                return cnt;
            }
            if (!limit && f[i][cnt] !== -1) {
                return f[i][cnt];
            }
            const up = limit ? +s[i] : 9;
            let ans = 0;
            for (let j = 0; j <= up; ++j) {
                ans += dfs(i + 1, cnt + (j === 1 ? 1 : 0), limit && j === up);
            }
            if (!limit) {
                f[i][cnt] = ans;
            }
            return ans;
        };
        return dfs(0, 0, true);
    }
    
    

All Problems

All Solutions