Welcome to Subscribe On Youtube

Question

Formatted question description: https://leetcode.ca/all/218.html

218. The Skyline Problem

Level

Hard

Description

A city’s skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

Image text Image text

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX, 0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ].

The output is a list of “key points” (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as: [ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

Algorithm

Save the left and right nodes of each line segment to the new vector height, and sort them according to the x coordinate value.

Then traverse to find the inflection point. When finding the inflection point, use a maximum heap to save the current roof height,

  • When you encounter the left node, insert the height information in the heap,
  • The height is deleted from the heap when the node on the right is encountered.

Use pre and cur to represent the previous height and the current height respectively,

  • When cur != pre, it means that there is an inflection point.
  • Note that when deleting elements from the heap, I use priority_queue to implement it. Priority_queue does not provide delete operations, so another unordered_map is used to mark the elements to be deleted.
  • When popping from the heap, first see if it has been marked,
    • If it has been marked, pop until it is empty or all unmarked values are found. Don’t be careful when sorting externally.
    • If the x-coordinates of two nodes are the same, we have to consider other attributes of the nodes to order to avoid redundant answers.

    • And the rule of body is
      • If they are all left nodes, sort them from largest to smallest according to the y coordinate,
      • If they are all right nodes, sort from small to large according to the y coordinate, one left node and one right node, let the left node be in the front

Code

  • import java.util.*;
    
    public class The_Skyline_Problem {
    
        public static void main(String[] args) {
    
            The_Skyline_Problem out = new The_Skyline_Problem();
    
            Solution_Heap s = out.new Solution_Heap();
    
            // output: [ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ]
            s.getSkyline( new int[][]{ {2,9,10}, {3,7,15}, {5,12,12}, {15,20,10}, {19,24,8} } )
                .stream().forEach(System.out::println);
        }
    
        class Solution_Heap {
    
        public List<List<Integer>> getSkyline(int[][] buildings) {
    
                List<List<Integer>> result = new ArrayList<>();
    
                if (buildings == null || buildings.length == 0
                    || buildings[0].length == 0) {
                    return result;
                }
    
                List<Edge> edges = new ArrayList<Edge>();
    
                // add all left/right edges
                for (int[] each: buildings) {
                    edges.add(new Edge(each[0], each[2], true));
                    edges.add(new Edge(each[1], each[2], false));
                }
    
                // sort edges, NlogN
                Collections.sort(edges, (a, b) -> {
                    if (a.x != b.x) {
                        return Integer.compare(a.x, b.x);
                    }
    
                    if (a.isStart && b.isStart) {
                        return Integer.compare(b.height, a.height); // higher edge at front
                    }
    
                    if (!a.isStart && !b.isStart) {
                        return Integer.compare(a.height, b.height); // lower edge at front
                    }
    
                    return a.isStart ? -1 : 1; // lower edge at front
                });
    
                // process edges, comparator is reverseOrder()
                PriorityQueue<Integer> heightHeap = new PriorityQueue<Integer>(Collections.reverseOrder());
    
                for (Edge edge : edges) {
    
                    if (edge.isStart) {
    
                        if (heightHeap.isEmpty() || edge.height > heightHeap.peek()) {
                            result.add(Arrays.asList( edge.x, edge.height ));
                        }
    
                        heightHeap.add(edge.height);
    
                    } else {
    
                        heightHeap.remove(edge.height);
    
                        if (heightHeap.isEmpty()){
                            result.add( Arrays.asList(edge.x, 0) ); // last point
                        } else if (edge.height > heightHeap.peek()){ // @note: intersect
                            result.add( Arrays.asList(edge.x, heightHeap.peek()) );
                        }
                    }
                }
                return result;
            }
    
            class Edge {
                int x; // x坐标
                int height;
                boolean isStart;
    
                public Edge(int x, int height, boolean isStart) {
                    this.x = x;
                    this.height = height;
                    this.isStart = isStart;
                }
            }
        }
    
        // merge sort example
        public class Solution_mergeSort {
    
            public List<int[]> getSkyline(int[][] buildings) {
    
                if(buildings == null || buildings.length == 0) {
                    return new LinkedList<int[]>();
                }
    
                return getSkyline(buildings, 0, buildings.length - 1);
            }
    
            // NlogN
            private LinkedList<int[]> getSkyline(int[][] buildings, int lo, int hi) {
    
                if (lo < hi) {
    
                    int mid = lo + (hi - lo) / 2;
                    return mergeSkylines(getSkyline(buildings, lo, mid), getSkyline(buildings, mid + 1, hi));
    
                } else {
    
                    //  lo == hi, base case, add the final already-merged building to skyline
                    LinkedList<int[]> skyline = new LinkedList<int[]>();
    
                    skyline.add(new int[]{buildings[lo][0], buildings[lo][2]}); // only care about [left-index, height]
                    skyline.add(new int[]{buildings[lo][1], 0}); // right-index is just for last right edge
    
                    return skyline;
                }
            }
    
            // merge two Skylines
            private LinkedList<int[]> mergeSkylines(LinkedList<int[]> skyline1, LinkedList<int[]> skyline2) {
    
                LinkedList<int[]> skyline = new LinkedList<int[]>();
                int height1 = 0, height2 = 0;
    
                while(skyline1.size() > 0 && skyline2.size() > 0) {
    
                    int index = 0, height = 0;
    
                    // @note: always remove the smaller index first, so order is guaranteed
                    if (skyline1.getFirst()[0] < skyline2.getFirst()[0]) {
                        index = skyline1.getFirst()[0];
                        height1 = skyline1.getFirst()[1];
                        height = Math.max(height1, height2);
                        skyline1.removeFirst();
                    } else if (skyline1.getFirst()[0] > skyline2.getFirst()[0]) {
                        index = skyline2.getFirst()[0];
                        height2 = skyline2.getFirst()[1];
                        height = Math.max(height1, height2);
                        skyline2.removeFirst();
                    } else {
                        index = skyline1.getFirst()[0];
                        height1 = skyline1.getFirst()[1];
                        height2 = skyline2.getFirst()[1];
                        height = Math.max(height1, height2);
                        skyline1.removeFirst();
                        skyline2.removeFirst();
                    }
    
                    if (skyline.size() == 0 || height != skyline.getLast()[1]) {
                        skyline.add(new int[]{index, height});
                    }
                }
    
                // final check
                skyline.addAll(skyline1);
                skyline.addAll(skyline2);
    
                return skyline;
            }
    
        }
    
    }
    
  • // OJ: https://leetcode.com/problems/the-skyline-problem/
    // Time: O(NlogN)
    // Space: O(N)
    // Ref: https://discuss.leetcode.com/topic/14939/my-c-code-using-one-priority-queue-812-ms
    bool cmp(vector<int> &a, vector<int> &b) {
        return a[0] < b[0];
    }
    class Solution {
    public:
        vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
             vector<pair<int, int>> ans;
             sort(buildings.begin(), buildings.end(), cmp);
             int i = 0, x = 0, y = 0, N = buildings.size();
             priority_queue<pair<int, int>> live;// first: height, second: right
             while (i < N || !live.empty()) {
                 if (i < N && (live.empty() || live.top().second >= buildings[i][0])) {
                     x = buildings[i][0];
                     while (i < N && buildings[i][0] == x) {
                         live.push(make_pair(buildings[i][2], buildings[i][1]));
                         ++i;
                     }
                 } else {
                     x = live.top().second;
                     while (!live.empty() && live.top().second <= x) live.pop();
                 }
                 y = live.empty() ? 0 : live.top().first;
                 if (ans.empty() || ans.back().second != y) ans.push_back(make_pair(x, y));
             }
             return ans;
        }
    };
    
  • '''
    >>> a = []
    >>> a.append((3, 5))
    >>> a.append((3, -5))
    >>> a.append((2, -10))
    >>> a.append((2, 10))
    >>> a
    [(3, 5), (3, -5), (2, -10), (2, 10)]
    
    >>> a.sort()
    >>> a
    [(2, -10), (2, 10), (3, -5), (3, 5)]
    
    
    
    >>> from queue import PriorityQueue
    >>> pq = PriorityQueue()
    >>>
    >>> pq.put([1,2,3])
    >>> pq.put([-10,20,30])
    >>> pq.put([11,22,33])
    >>>
    >>> pq
    <Queue.PriorityQueue instance at 0x10aec51b8>
    >>> pq.queue[0][0]
    -10
    >>> pq.get()
    [-10, 20, 30]
    >>> pq.queue[0][0]
    1
    '''
    
    from queue import PriorityQueue
    class Solution:
        def getSkyline(self, buildings: List[List[int]]) -> List[List[int]]:
            ans, lines, pq = [], [], PriorityQueue()
            for build in buildings:
                lines.extend([build[0], build[1]])
            lines.sort()
            curbuilding, n = 0, len(buildings)
            for line in lines: # 对于每一个边界线 lines[i],找出所有包含 lines[i] 的建筑物
                while curbuilding < n and buildings[curbuilding][0] <= line:
                    pq.put([-buildings[curbuilding][2], buildings[curbuilding][0], buildings[curbuilding][1]]) # 建筑物的高度构建优先队列(大根堆),这里会包括line自己的building
                    curbuilding += 1
                while not pq.empty() and pq.queue[0][2] <= line: # higher at heap top after negated
                    pq.get() # i.e. pop()
                high = 0 # 建筑物的左边界小于等于 lines[i],右边界大于 lines[i],则这些建筑物中高度最高的建筑物的高度就是该线轮廓点的高度
                if not pq.empty():
                    high = -pq.queue[0][0]
                if len(ans) > 0 and ans[-1][1] == high: # 绿色建筑的左边的line,就要跳过
                    continue
                ans.append([line, high])
            return ans
    
    ############
    
    '''
    The solution uses a list called points to store the critical points and heights of the buildings. Each point is represented as a tuple (x, h), where x is the x-coordinate and h is the height. The points are sorted in ascending order based on the x-coordinate.
    
    The solution also uses a heap to store the heights in descending order. The heap is initialized with a height of 0. For each point, if the height is negative, it means it is the start of a building, so the negative height is added to the heap. If the height is positive, it means it is the end of a building, so the corresponding negative height is removed from the heap.
    
    After processing each point, the maximum height is obtained from the heap, and if it is different from the previous maximum height, the current point is added to the skyline.
    
    Finally, the skyline is returned, excluding the initial point (0, 0) that was added as a starting point.
    
    Note: The solution assumes that the input buildings is a list of tuples (left, right, height), where left and right represent the x-coordinates of the building's left and right edges, and height represents the height of the building.
    '''
    
    import heapq
    
    class Solution:
        def getSkyline(self, buildings):
            # Create a list to store the critical points and heights
            points = []
            for left, right, height in buildings:
                points.append((left, -height))  # Start of building, negative height
                points.append((right, height))  # End of building, positive height
    
            # Sort the points in ascending order based on x-coordinate
            # If two points have the same x-coordinate, the one with larger height comes first
            points.sort()
    
            # Create a heap to store the heights in descending order
            heights = [0]  # Initialize the heap with a height of 0
            skyline = [(0, 0)]  # Initialize the skyline with a point (0, 0)
    
            for x, h in points:
                if h < 0:
                    heapq.heappush(heights, h)  # Add the negative height to the heap
                else:
                    heights.remove(-h)  # Remove the corresponding negative height from the heap
                    heapq.heapify(heights)  # Reorganize the heap
    
                # The current maximum height is the first element in the heap
                max_height = -heights[0]
    
                # If the maximum height has changed, add the current point to the skyline
                if max_height != skyline[-1][1]:
                    skyline.append((x, max_height))
    
            return skyline[1:]  # Exclude the initial point (0, 0)
    
    
  • type Matrix struct{ left, right, height int }
    type Queue []Matrix
    
    func (q Queue) Len() int            { return len(q) }
    func (q Queue) Top() Matrix         { return q[0] }
    func (q Queue) Swap(i, j int)       { q[i], q[j] = q[j], q[i] }
    func (q Queue) Less(i, j int) bool  { return q[i].height > q[j].height }
    func (q *Queue) Push(x interface{}) { *q = append(*q, x.(Matrix)) }
    func (q *Queue) Pop() interface{} {
    	old, x := *q, (*q)[len(*q)-1]
    	*q = old[:len(old)-1]
    	return x
    }
    
    func getSkyline(buildings [][]int) [][]int {
    	skys, lines, pq := make([][]int, 0), make([]int, 0), &Queue{}
    	heap.Init(pq)
    	for _, v := range buildings {
    		lines = append(lines, v[0], v[1])
    	}
    	sort.Ints(lines)
    	city, n := 0, len(buildings)
    	for _, line := range lines {
    		// 将所有符合条件的矩形加入队列
    		for ; city < n && buildings[city][0] <= line && buildings[city][1] > line; city++ {
    			v := Matrix{left: buildings[city][0], right: buildings[city][1], height: buildings[city][2]}
    			heap.Push(pq, v)
    		}
    		// 从队列移除不符合条件的矩形
    		for pq.Len() > 0 && pq.Top().right <= line {
    			heap.Pop(pq)
    		}
    		high := 0
    		// 队列为空说明是最右侧建筑物的终点,其轮廓点为 (line, 0)
    		if pq.Len() != 0 {
    			high = pq.Top().height
    		}
    		// 如果该点高度和前一个轮廓点一样的话,直接忽略
    		if len(skys) > 0 && skys[len(skys)-1][1] == high {
    			continue
    		}
    		skys = append(skys, []int{line, high})
    	}
    	return skys
    }
    

All Problems

All Solutions