Welcome to Subscribe On Youtube
199. Binary Tree Right Side View
Description
Given the root
of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
Example 1:
Input: root = [1,2,3,null,5,null,4] Output: [1,3,4]
Example 2:
Input: root = [1,null,3] Output: [1,3]
Example 3:
Input: root = [] Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Solutions
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Integer> rightSideView(TreeNode root) { List<Integer> ans = new ArrayList<>(); if (root == null) { return ans; } Deque<TreeNode> q = new ArrayDeque<>(); q.offer(root); while (!q.isEmpty()) { ans.add(q.peekLast().val); for (int n = q.size(); n > 0; --n) { TreeNode node = q.poll(); if (node.left != null) { q.offer(node.left); } if (node.right != null) { q.offer(node.right); } } } return ans; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<int> rightSideView(TreeNode* root) { vector<int> ans; if (!root) { return ans; } queue<TreeNode*> q{ {root} }; while (!q.empty()) { ans.emplace_back(q.back()->val); for (int n = q.size(); n; --n) { TreeNode* node = q.front(); q.pop(); if (node->left) { q.push(node->left); } if (node->right) { q.push(node->right); } } } return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def rightSideView(self, root: Optional[TreeNode]) -> List[int]: ans = [] if root is None: return ans q = deque([root]) while q: ans.append(q[-1].val) # add last node of previous level traversal results for _ in range(len(q)): node = q.popleft() if node.left: q.append(node.left) if node.right: q.append(node.right) return ans ############# # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None from collections import deque class Solution(object): def rightSideView(self, root): """ :type root: TreeNode :rtype: List[int] """ def dfs(root, h): if root: if h == len(ans): ans.append(root.val) # pre-order, all the way to the right dfs(root.right, h + 1) dfs(root.left, h + 1) ans = [] dfs(root, 0) return ans
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func rightSideView(root *TreeNode) (ans []int) { if root == nil { return } q := []*TreeNode{root} for len(q) > 0 { ans = append(ans, q[len(q)-1].Val) for n := len(q); n > 0; n-- { node := q[0] q = q[1:] if node.Left != nil { q = append(q, node.Left) } if node.Right != nil { q = append(q, node.Right) } } } return }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function rightSideView(root: TreeNode | null): number[] { const ans = []; if (!root) { return ans; } const q = [root]; while (q.length) { const n = q.length; ans.push(q[n - 1].val); for (let i = 0; i < n; ++i) { const { left, right } = q.shift(); left && q.push(left); right && q.push(right); } } return ans; }
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; use std::collections::VecDeque; impl Solution { pub fn right_side_view(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> { let mut res = vec![]; if root.is_none() { return res; } let mut q = VecDeque::new(); q.push_back(root); while !q.is_empty() { let n = q.len(); res.push(q[n - 1].as_ref().unwrap().borrow().val); for _ in 0..n { if let Some(node) = q.pop_front().unwrap() { let mut node = node.borrow_mut(); if node.left.is_some() { q.push_back(node.left.take()); } if node.right.is_some() { q.push_back(node.right.take()); } } } } res } }