Welcome to Subscribe On Youtube

152. Maximum Product Subarray

Description

Given an integer array nums, find a subarray that has the largest product, and return the product.

The test cases are generated so that the answer will fit in a 32-bit integer.

 

Example 1:

Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.

Example 2:

Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • -10 <= nums[i] <= 10
  • The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

Solutions

  • class Solution {
        public int maxProduct(int[] nums) {
            int f = nums[0], g = nums[0], ans = nums[0];
            for (int i = 1; i < nums.length; ++i) {
                int ff = f, gg = g;
                f = Math.max(nums[i], Math.max(ff * nums[i], gg * nums[i]));
                g = Math.min(nums[i], Math.min(ff * nums[i], gg * nums[i]));
                ans = Math.max(ans, f);
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        int maxProduct(vector<int>& nums) {
            int f = nums[0], g = nums[0], ans = nums[0];
            for (int i = 1; i < nums.size(); ++i) {
                int ff = f, gg = g;
                f = max({nums[i], ff * nums[i], gg * nums[i]});
                g = min({nums[i], ff * nums[i], gg * nums[i]});
                ans = max(ans, f);
            }
            return ans;
        }
    };
    
  • class Solution:
        def maxProduct(self, nums: List[int]) -> int:
            ans = f = g = nums[0]
            for x in nums[1:]:
                ff, gg = f, g
                f = max(x, ff * x, gg * x)
                g = min(x, ff * x, gg * x)
                ans = max(ans, f)
            return ans
    
    
  • func maxProduct(nums []int) int {
    	f, g, ans := nums[0], nums[0], nums[0]
    	for _, x := range nums[1:] {
    		ff, gg := f, g
    		f = max(x, max(ff*x, gg*x))
    		g = min(x, min(ff*x, gg*x))
    		ans = max(ans, f)
    	}
    	return ans
    }
    
  • function maxProduct(nums: number[]): number {
        let [f, g, ans] = [nums[0], nums[0], nums[0]];
        for (let i = 1; i < nums.length; ++i) {
            const [ff, gg] = [f, g];
            f = Math.max(nums[i], ff * nums[i], gg * nums[i]);
            g = Math.min(nums[i], ff * nums[i], gg * nums[i]);
            ans = Math.max(ans, f);
        }
        return ans;
    }
    
    
  • /**
     * @param {number[]} nums
     * @return {number}
     */
    var maxProduct = function (nums) {
        let [f, g, ans] = [nums[0], nums[0], nums[0]];
        for (let i = 1; i < nums.length; ++i) {
            const [ff, gg] = [f, g];
            f = Math.max(nums[i], ff * nums[i], gg * nums[i]);
            g = Math.min(nums[i], ff * nums[i], gg * nums[i]);
            ans = Math.max(ans, f);
        }
        return ans;
    };
    
    
  • public class Solution {
        public int MaxProduct(int[] nums) {
            int f = nums[0], g = nums[0], ans = nums[0];
            for (int i = 1; i < nums.Length; ++i) {
                int ff = f, gg = g;
                f = Math.Max(nums[i], Math.Max(ff * nums[i], gg * nums[i]));
                g = Math.Min(nums[i], Math.Min(ff * nums[i], gg * nums[i]));
                ans = Math.Max(ans, f);
            }
            return ans;
        }
    }
    
  • impl Solution {
        pub fn max_product(nums: Vec<i32>) -> i32 {
            let mut f = nums[0];
            let mut g = nums[0];
            let mut ans = nums[0];
            for &x in nums.iter().skip(1) {
                let (ff, gg) = (f, g);
                f = x.max(x * ff).max(x * gg);
                g = x.min(x * ff).min(x * gg);
                ans = ans.max(f);
            }
            ans
        }
    }
    
    

All Problems

All Solutions