Welcome to Subscribe On Youtube
145. Binary Tree Postorder Traversal
Description
Given the root
of a binary tree, return the postorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3] Output: [3,2,1]
Example 2:
Input: root = [] Output: []
Example 3:
Input: root = [1] Output: [1]
Constraints:
- The number of the nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Solutions
1. Recusive Traversal
2. Non-recursive using Stack
3. Morris Traversal
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public List<Integer> postorderTraversal(TreeNode root) { LinkedList<Integer> ans = new LinkedList<>(); while (root != null) { if (root.right == null) { ans.addFirst(root.val); root = root.left; } else { TreeNode next = root.right; while (next.left != null && next.left != root) { next = next.left; } if (next.left == null) { ans.addFirst(root.val); next.left = root; root = root.right; } else { next.left = null; root = root.left; } } } return ans; } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: vector<int> postorderTraversal(TreeNode* root) { vector<int> ans; while (root) { if (!root->right) { ans.push_back(root->val); root = root->left; } else { TreeNode* next = root->right; while (next->left && next->left != root) { next = next->left; } if (!next->left) { ans.push_back(root->val); next->left = root; root = root->right; } else { next->left = nullptr; root = root->left; } } } reverse(ans.begin(), ans.end()); return ans; } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]: ans = [] while root: if root.right is None: ans.append(root.val) root = root.left else: next = root.right while next.left and next.left != root: next = next.left if next.left != root: ans.append(root.val) next.left = root root = root.right else: next.left = None root = root.left return ans[::-1]
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func postorderTraversal(root *TreeNode) []int { var ans []int for root != nil { if root.Right == nil { ans = append([]int{root.Val}, ans...) root = root.Left } else { next := root.Right for next.Left != nil && next.Left != root { next = next.Left } if next.Left == nil { ans = append([]int{root.Val}, ans...) next.Left = root root = root.Right } else { next.Left = nil root = root.Left } } } return ans }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function postorderTraversal(root: TreeNode | null): number[] { if (root == null) return []; let stack = []; let ans = []; let prev = null; while (root || stack.length) { while (root) { stack.push(root); root = root.left; } root = stack.pop(); if (!root.right || root.right == prev) { ans.push(root.val); prev = root; root = null; } else { stack.push(root); root = root.right; } } return ans; }
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) { if root.is_none() { return; } let node = root.as_ref().unwrap().borrow(); Self::dfs(&node.left, res); Self::dfs(&node.right, res); res.push(node.val); } pub fn postorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> { let mut res = vec![]; Self::dfs(&root, &mut res); res } }