Welcome to Subscribe On Youtube
121. Best Time to Buy and Sell Stock
Description
You are given an array prices
where prices[i]
is the price of a given stock on the ith
day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0
.
Example 1:
Input: prices = [7,1,5,3,6,4] Output: 5 Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5. Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
Example 2:
Input: prices = [7,6,4,3,1] Output: 0 Explanation: In this case, no transactions are done and the max profit = 0.
Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 104
Solutions
Solution 1: Enumerate + Maintain the Minimum Value of the Prefix
We can enumerate each element of the array $nums$ as the selling price. Then we need to find a minimum value in front of it as the purchase price to maximize the profit.
Therefore, we use a variable $mi$ to maintain the prefix minimum value of the array $nums$. Then we traverse the array $nums$ and for each element $v$, calculate the difference between it and the minimum value $mi$ in front of it, and update the answer to the maximum of the difference. Then update $mi = min(mi, v)$. Continue to traverse the array $nums$ until the traversal ends.
Finally, return the answer.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
-
class Solution { public int maxProfit(int[] prices) { int ans = 0, mi = prices[0]; for (int v : prices) { ans = Math.max(ans, v - mi); mi = Math.min(mi, v); } return ans; } }
-
class Solution { public: int maxProfit(vector<int>& prices) { int ans = 0, mi = prices[0]; for (int& v : prices) { ans = max(ans, v - mi); mi = min(mi, v); } return ans; } };
-
''' >>> import math >>> a = math.inf >>> a inf >>> x = float('-inf') >>> y = float('inf') >>> print(x < y) # Output: True True >>> >>> z = -math.inf >>> x==z True ''' class Solution: def maxProfit(self, prices: List[int]) -> int: ans, mi = 0, inf for v in prices: mi = min(mi, v) ans = max(ans, v - mi) return ans ############ class Solution(object): def maxProfit(self, prices): """ :type prices: List[int] :rtype: int """ if not prices: return 0 ans = 0 pre = prices[0] for i in range(1, len(prices)): pre = min(pre, prices[i]) ans = max(prices[i] - pre, ans) return ans
-
func maxProfit(prices []int) (ans int) { mi := prices[0] for _, v := range prices { ans = max(ans, v-mi) mi = min(mi, v) } return }
-
function maxProfit(prices: number[]): number { let ans = 0; let mi = prices[0]; for (const v of prices) { ans = Math.max(ans, v - mi); mi = Math.min(mi, v); } return ans; }
-
/** * @param {number[]} prices * @return {number} */ var maxProfit = function (prices) { let ans = 0; let mi = prices[0]; for (const v of prices) { ans = Math.max(ans, v - mi); mi = Math.min(mi, v); } return ans; };
-
class Solution { /** * @param Integer[] $prices * @return Integer */ function maxProfit($prices) { $win = 0; $minPrice = $prices[0]; $len = count($prices); for ($i = 1; $i < $len; $i++) { $minPrice = min($minPrice, $prices[$i]); $win = max($win, $prices[$i] - $minPrice); } return $win; } }
-
public class Solution { public int MaxProfit(int[] prices) { int ans = 0, mi = prices[0]; foreach (int v in prices) { ans = Math.Max(ans, v - mi); mi = Math.Min(mi, v); } return ans; } }
-
impl Solution { pub fn max_profit(prices: Vec<i32>) -> i32 { let mut res = 0; let mut min = i32::MAX; for price in prices { res = res.max(price - min); min = min.min(price); } res } }