Welcome to Subscribe On Youtube

119. Pascal’s Triangle II

Description

Given an integer rowIndex, return the rowIndexth (0-indexed) row of the Pascal's triangle.

In Pascal's triangle, each number is the sum of the two numbers directly above it as shown:

 

Example 1:

Input: rowIndex = 3
Output: [1,3,3,1]

Example 2:

Input: rowIndex = 0
Output: [1]

Example 3:

Input: rowIndex = 1
Output: [1,1]

 

Constraints:

  • 0 <= rowIndex <= 33

 

Follow up: Could you optimize your algorithm to use only O(rowIndex) extra space?

Solutions

Solution 1: Recursion

We create an array $f$ of length $rowIndex + 1$, initially all elements are $1$.

Next, starting from the second row, we calculate the value of the $j$th element in the current row from back to front, $f[j] = f[j] + f[j - 1]$, where $j \in [1, i - 1]$.

Finally, return $f$.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the given number of rows.

  • class Solution {
        public List<Integer> getRow(int rowIndex) {
            List<Integer> f = new ArrayList<>();
            for (int i = 0; i < rowIndex + 1; ++i) {
                f.add(1);
            }
            for (int i = 2; i < rowIndex + 1; ++i) {
                for (int j = i - 1; j > 0; --j) {
                    f.set(j, f.get(j) + f.get(j - 1));
                }
            }
            return f;
        }
    }
    
  • class Solution {
    public:
        vector<int> getRow(int rowIndex) {
            vector<int> f(rowIndex + 1, 1);
            for (int i = 2; i < rowIndex + 1; ++i) {
                for (int j = i - 1; j; --j) {
                    f[j] += f[j - 1];
                }
            }
            return f;
        }
    };
    
  • class Solution:
        def getRow(self, rowIndex: int) -> List[int]:
            f = [1] * (rowIndex + 1)
            for i in range(2, rowIndex + 1):
                for j in range(i - 1, 0, -1):
                    f[j] += f[j - 1]
            return f
    
    
  • func getRow(rowIndex int) []int {
    	f := make([]int, rowIndex+1)
    	for i := range f {
    		f[i] = 1
    	}
    	for i := 2; i < rowIndex+1; i++ {
    		for j := i - 1; j > 0; j-- {
    			f[j] += f[j-1]
    		}
    	}
    	return f
    }
    
  • function getRow(rowIndex: number): number[] {
        const f: number[] = Array(rowIndex + 1).fill(1);
        for (let i = 2; i < rowIndex + 1; ++i) {
            for (let j = i - 1; j; --j) {
                f[j] += f[j - 1];
            }
        }
        return f;
    }
    
    
  • impl Solution {
        pub fn get_row(row_index: i32) -> Vec<i32> {
            let n = (row_index + 1) as usize;
            let mut f = vec![1; n];
            for i in 2..n {
                for j in (1..i).rev() {
                    f[j] += f[j - 1];
                }
            }
            f
        }
    }
    
    

All Problems

All Solutions