Welcome to Subscribe On Youtube
111. Minimum Depth of Binary Tree
Description
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
Example 1:
Input: root = [3,9,20,null,null,15,7] Output: 2
Example 2:
Input: root = [2,null,3,null,4,null,5,null,6] Output: 5
Constraints:
- The number of nodes in the tree is in the range
[0, 105]
. -1000 <= Node.val <= 1000
Solutions
Solution 1: Recursion
The termination condition for recursion is when the current node is null, at which point return $0$. If one of the left or right subtrees of the current node is null, return the minimum depth of the non-null subtree plus $1$. If neither the left nor right subtree of the current node is null, return the smaller value of the minimum depths of the left and right subtrees plus $1$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
Solution 2: BFS
Use a queue to implement breadth-first search, initially adding the root node to the queue.
Each time, take a node from the queue.
- If this node is a leaf node, directly return the current depth.
- If this node is not a leaf node, add all non-null child nodes of this node to the queue.
Continue to search the next layer of nodes until a leaf node is found.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
-
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode() {} * TreeNode(int val) { this.val = val; } * TreeNode(int val, TreeNode left, TreeNode right) { * this.val = val; * this.left = left; * this.right = right; * } * } */ class Solution { public int minDepth(TreeNode root) { if (root == null) { return 0; } if (root.left == null) { return 1 + minDepth(root.right); } if (root.right == null) { return 1 + minDepth(root.left); } return 1 + Math.min(minDepth(root.left), minDepth(root.right)); } }
-
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int minDepth(TreeNode* root) { if (!root) { return 0; } if (!root->left) { return 1 + minDepth(root->right); } if (!root->right) { return 1 + minDepth(root->left); } return 1 + min(minDepth(root->left), minDepth(root->right)); } };
-
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right # dfs class Solution: def minDepth(self, root: Optional[TreeNode]) -> int: if root is None: return 0 if root.left is None: return 1 + self.minDepth(root.right) if root.right is None: return 1 + self.minDepth(root.left) return 1 + min(self.minDepth(root.left), self.minDepth(root.right)) ########## # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None from collections import deque class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # bfs class Solution: def minDepth(self, root: TreeNode) -> int: if not root: return 0 queue = deque([(root, 1)]) # The queue holds tuples of (node, current_depth) while queue: current_node, depth = queue.popleft() # Check if the current node is a leaf node if not current_node.left and not current_node.right: return depth # Otherwise, add the children to the queue with incremented depth if current_node.left: queue.append((current_node.left, depth + 1)) if current_node.right: queue.append((current_node.right, depth + 1)) # test case: # Construct a binary tree: [3,9,20,None,None,15,7] root = TreeNode(3) root.left = TreeNode(9) root.right = TreeNode(20) root.right.left = TreeNode(15) root.right.right = TreeNode(7) sol = Solution() print(sol.minDepth(root)) # Output: 2
-
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */ func minDepth(root *TreeNode) int { if root == nil { return 0 } if root.Left == nil { return 1 + minDepth(root.Right) } if root.Right == nil { return 1 + minDepth(root.Left) } return 1 + min(minDepth(root.Left), minDepth(root.Right)) }
-
/** * Definition for a binary tree node. * class TreeNode { * val: number * left: TreeNode | null * right: TreeNode | null * constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } * } */ function minDepth(root: TreeNode | null): number { if (root == null) { return 0; } const { left, right } = root; if (left == null) { return 1 + minDepth(right); } if (right == null) { return 1 + minDepth(left); } return 1 + Math.min(minDepth(left), minDepth(right)); }
-
/** * Definition for a binary tree node. * function TreeNode(val, left, right) { * this.val = (val===undefined ? 0 : val) * this.left = (left===undefined ? null : left) * this.right = (right===undefined ? null : right) * } */ /** * @param {TreeNode} root * @return {number} */ var minDepth = function (root) { if (!root) { return 0; } if (!root.left) { return 1 + minDepth(root.right); } if (!root.right) { return 1 + minDepth(root.left); } return 1 + Math.min(minDepth(root.left), minDepth(root.right)); };
-
// Definition for a binary tree node. // #[derive(Debug, PartialEq, Eq)] // pub struct TreeNode { // pub val: i32, // pub left: Option<Rc<RefCell<TreeNode>>>, // pub right: Option<Rc<RefCell<TreeNode>>>, // } // // impl TreeNode { // #[inline] // pub fn new(val: i32) -> Self { // TreeNode { // val, // left: None, // right: None // } // } // } use std::rc::Rc; use std::cell::RefCell; impl Solution { fn dfs(root: &Option<Rc<RefCell<TreeNode>>>) -> i32 { if root.is_none() { return 0; } let node = root.as_ref().unwrap().borrow(); if node.left.is_none() { return 1 + Self::dfs(&node.right); } if node.right.is_none() { return 1 + Self::dfs(&node.left); } 1 + Self::dfs(&node.left).min(Self::dfs(&node.right)) } pub fn min_depth(root: Option<Rc<RefCell<TreeNode>>>) -> i32 { Self::dfs(&root) } }