Welcome to Subscribe On Youtube
97. Interleaving String
Description
Given strings s1
, s2
, and s3
, find whether s3
is formed by an interleaving of s1
and s2
.
An interleaving of two strings s
and t
is a configuration where s
and t
are divided into n
and m
substrings respectively, such that:
s = s1 + s2 + ... + sn
t = t1 + t2 + ... + tm
|n - m| <= 1
- The interleaving is
s1 + t1 + s2 + t2 + s3 + t3 + ...
ort1 + s1 + t2 + s2 + t3 + s3 + ...
Note: a + b
is the concatenation of strings a
and b
.
Example 1:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac" Output: true Explanation: One way to obtain s3 is: Split s1 into s1 = "aa" + "bc" + "c", and s2 into s2 = "dbbc" + "a". Interleaving the two splits, we get "aa" + "dbbc" + "bc" + "a" + "c" = "aadbbcbcac". Since s3 can be obtained by interleaving s1 and s2, we return true.
Example 2:
Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc" Output: false Explanation: Notice how it is impossible to interleave s2 with any other string to obtain s3.
Example 3:
Input: s1 = "", s2 = "", s3 = "" Output: true
Constraints:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1
,s2
, ands3
consist of lowercase English letters.
Follow up: Could you solve it using only O(s2.length)
additional memory space?
Solutions
Solution 1: Memoization Search
Let’s denote the length of string $s_1$ as $m$ and the length of string $s_2$ as $n$. If $m + n \neq |s_3|$, then $s_3$ is definitely not an interleaving string of $s_1$ and $s_2$, so we return false
.
Next, we design a function $dfs(i, j)$, which represents whether the remaining part of $s_3$ can be interleaved from the $i$th character of $s_1$ and the $j$th character of $s_2$. The answer is $dfs(0, 0)$.
The calculation process of function $dfs(i, j)$ is as follows:
If $i \geq m$ and $j \geq n$, it means that both $s_1$ and $s_2$ have been traversed, so we return true
.
If $i < m$ and $s_1[i] = s_3[i + j]$, it means that the character $s_1[i]$ is part of $s_3[i + j]$. Therefore, we recursively call $dfs(i + 1, j)$ to check whether the next character of $s_1$ can match the current character of $s_2$. If it can match, we return true
.
Similarly, if $j < n$ and $s_2[j] = s_3[i + j]$, it means that the character $s_2[j]$ is part of $s_3[i + j]$. Therefore, we recursively call $dfs(i, j + 1)$ to check whether the next character of $s_2$ can match the current character of $s_1$. If it can match, we return true
.
Otherwise, we return false
.
To avoid repeated calculations, we can use memoization search.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of strings $s_1$ and $s_2$ respectively.
Solution 2: Dynamic Programming
We can convert the memoization search in Solution 1 into dynamic programming.
We define $f[i][j]$ to represent whether the first $i$ characters of string $s_1$ and the first $j$ characters of string $s_2$ can interleave to form the first $i + j$ characters of string $s_3$. When transitioning states, we can consider whether the current character is obtained from the last character of $s_1$ or the last character of $s_2$. Therefore, we have the state transition equation:
\[f[i][j] = \begin{cases} f[i - 1][j] & \text{if } s_1[i - 1] = s_3[i + j - 1] \\ \text{or } f[i][j - 1] & \text{if } s_2[j - 1] = s_3[i + j - 1] \\ \text{false} & \text{otherwise} \end{cases}\]where $f[0][0] = \text{true}$ indicates that an empty string is an interleaving string of two empty strings.
The answer is $f[m][n]$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of strings $s_1$ and $s_2$ respectively.
We notice that the state $f[i][j]$ is only related to the states $f[i - 1][j]$, $f[i][j - 1]$, and $f[i - 1][j - 1]$. Therefore, we can use a rolling array to optimize the space complexity, reducing the original space complexity from $O(m \times n)$ to $O(n)$.
-
class Solution { public boolean isInterleave(String s1, String s2, String s3) { int m = s1.length(), n = s2.length(); if (m + n != s3.length()) { return false; } boolean[] f = new boolean[n + 1]; f[0] = true; for (int i = 0; i <= m; ++i) { for (int j = 0; j <= n; ++j) { int k = i + j - 1; if (i > 0) { f[j] &= s1.charAt(i - 1) == s3.charAt(k); } if (j > 0) { f[j] |= (f[j - 1] & s2.charAt(j - 1) == s3.charAt(k)); } } } return f[n]; } } ////// public class Solution { public boolean isInterleave(String s1, String s2, String s3) { if (s1.length() == 0 || s1 == null) { return s2.equals(s3); } if (s2.length() == 0 || s2 == null) { return s1.equals(s3); } // @note: missed this simple check if (s1.length() + s2.length() != s3.length()) { return false; } // 1-to-i of s1, and 1-to-j of s2, can for 1-to-(i+j) of s3 boolean[][] dp = new boolean[s1.length() + 1][s2.length() + 1]; // +1 for empty string dp[0][0] = true; // pre-process for empty string case for (int i = 1; i < s1.length() + 1; i++) { dp[i][0] = (s1.charAt(i - 1) == s3.charAt(i - 1)) && dp[i - 1][0]; } for (int i = 1; i < s2.length() + 1; i++) { dp[0][i] = (s2.charAt(i - 1) == s3.charAt(i - 1)) && dp[0][i - 1]; } for (int i = 1; i < s1.length() + 1; i++) { for (int j = 1; j < s2.length() + 1; j++) { boolean withS1 = s1.charAt(i - 1) == s3.charAt(i - 1 + j) && dp[i - 1][j]; boolean withS2 = s2.charAt(j - 1) == s3.charAt(i - 1 + j) && dp[i][j - 1]; dp[i][j] = withS1 || withS2; } } return dp[s1.length()][s2.length()]; } }
-
class Solution { public: bool isInterleave(string s1, string s2, string s3) { int m = s1.size(), n = s2.size(); if (m + n != s3.size()) { return false; } bool f[n + 1]; memset(f, false, sizeof(f)); f[0] = true; for (int i = 0; i <= m; ++i) { for (int j = 0; j <= n; ++j) { int k = i + j - 1; if (i) { f[j] &= s1[i - 1] == s3[k]; } if (j) { f[j] |= (s2[j - 1] == s3[k] && f[j - 1]); } } } return f[n]; } };
-
# 2-d class Solution: def isInterleave(self, s1: str, s2: str, s3: str) -> bool: if len(s1) + len(s2) != len(s3): return False dp = [[False] * (len(s2) + 1) for _ in range(len(s1) + 1)] dp[0][0] = True for i in range(1, len(s1) + 1): dp[i][0] = s1[i - 1] == s3[i - 1] and dp[i - 1][0] for i in range(1, len(s2) + 1): dp[0][i] = s2[i - 1] == s3[i - 1] and dp[0][i - 1] # fill in dp array for i in range(1, len(s1) + 1): for j in range(1, len(s2) + 1): with_s1 = s1[i - 1] == s3[i + j - 1] and dp[i - 1][j] with_s2 = s2[j - 1] == s3[i + j - 1] and dp[i][j - 1] dp[i][j] = with_s1 or with_s2 return dp[-1][-1] ############ # 1-d class Solution: def isInterleave(self, s1: str, s2: str, s3: str) -> bool: m, n = len(s1), len(s2) if m + n != len(s3): return False f = [True] + [False] * n for i in range(m + 1): for j in range(n + 1): k = i + j - 1 if i: f[j] &= s1[i - 1] == s3[k] if j: f[j] |= f[j - 1] and s2[j - 1] == s3[k] return f[n] ########### class Solution: # dfs def isInterleave(self, s1: str, s2: str, s3: str) -> bool: m, n = len(s1), len(s2) if m + n != len(s3): return False @cache def dfs(i, j): if i == m and j == n: return True return ( ( i < m and s1[i] == s3[i + j] and dfs(i + 1, j) ) or ( j < n and s2[j] == s3[i + j] and dfs(i, j + 1) ) ) return dfs(0, 0)
-
func isInterleave(s1 string, s2 string, s3 string) bool { m, n := len(s1), len(s2) if m+n != len(s3) { return false } f := make([]bool, n+1) f[0] = true for i := 0; i <= m; i++ { for j := 0; j <= n; j++ { k := i + j - 1 if i > 0 { f[j] = (f[j] && s1[i-1] == s3[k]) } if j > 0 { f[j] = (f[j] || (s2[j-1] == s3[k] && f[j-1])) } } } return f[n] }
-
function isInterleave(s1: string, s2: string, s3: string): boolean { const m = s1.length; const n = s2.length; if (m + n !== s3.length) { return false; } const f: boolean[] = new Array(n + 1).fill(false); f[0] = true; for (let i = 0; i <= m; ++i) { for (let j = 0; j <= n; ++j) { const k = i + j - 1; if (i) { f[j] = f[j] && s1[i - 1] === s3[k]; } if (j) { f[j] = f[j] || (f[j - 1] && s2[j - 1] === s3[k]); } } } return f[n]; }
-
public class Solution { public bool IsInterleave(string s1, string s2, string s3) { int m = s1.Length, n = s2.Length; if (m + n != s3.Length) { return false; } bool[] f = new bool[n + 1]; f[0] = true; for (int i = 0; i <= m; ++i) { for (int j = 0; j <= n; ++j) { int k = i + j - 1; if (i > 0) { f[j] &= s1[i - 1] == s3[k]; } if (j > 0) { f[j] |= (f[j - 1] & s2[j - 1] == s3[k]); } } } return f[n]; } }
-
impl Solution { #[allow(dead_code)] pub fn is_interleave(s1: String, s2: String, s3: String) -> bool { let n = s1.len(); let m = s2.len(); if s1.len() + s2.len() != s3.len() { return false; } let mut record = vec![vec![-1; m + 1]; n + 1]; Self::dfs( &mut record, n, m, 0, 0, &s1.chars().collect(), &s2.chars().collect(), &s3.chars().collect() ) } #[allow(dead_code)] fn dfs( record: &mut Vec<Vec<i32>>, n: usize, m: usize, i: usize, j: usize, s1: &Vec<char>, s2: &Vec<char>, s3: &Vec<char> ) -> bool { if i >= n && j >= m { return true; } if record[i][j] != -1 { return record[i][j] == 1; } // Set the initial value record[i][j] = 0; let k = i + j; // Let's try `s1` first if i < n && s1[i] == s3[k] && Self::dfs(record, n, m, i + 1, j, s1, s2, s3) { record[i][j] = 1; } // If the first approach does not succeed, let's then try `s2` if record[i][j] == 0 && j < m && s2[j] == s3[k] && Self::dfs(record, n, m, i, j + 1, s1, s2, s3) { record[i][j] = 1; } record[i][j] == 1 } }