Welcome to Subscribe On Youtube
72. Edit Distance
Description
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
Solutions
Solution 1: Dynamic Programming
We define $f[i][j]$ as the minimum number of operations to convert $word1$ of length $i$ to $word2$ of length $j$. $f[i][0] = i$, $f[0][j] = j$, $i \in [1, m], j \in [0, n]$.
We consider $f[i][j]$:
- If $word1[i - 1] = word2[j - 1]$, then we only need to consider the minimum number of operations to convert $word1$ of length $i - 1$ to $word2$ of length $j - 1$, so $f[i][j] = f[i - 1][j - 1]$;
- Otherwise, we can consider insert, delete, and replace operations, then $f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1$.
Finally, we can get the state transition equation:
\[f[i][j] = \begin{cases} i, & \text{if } j = 0 \\ j, & \text{if } i = 0 \\ f[i - 1][j - 1], & \text{if } word1[i - 1] = word2[j - 1] \\ \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1, & \text{otherwise} \end{cases}\]Finally, we return $f[m][n]$.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. $m$ and $n$ are the lengths of $word1$ and $word2$ respectively.
-
class Solution { public int minDistance(String word1, String word2) { int m = word1.length(), n = word2.length(); int[][] f = new int[m + 1][n + 1]; for (int j = 1; j <= n; ++j) { f[0][j] = j; } for (int i = 1; i <= m; ++i) { f[i][0] = i; for (int j = 1; j <= n; ++j) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { f[i][j] = f[i - 1][j - 1]; } else { f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1; } } } return f[m][n]; } }
-
class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); int f[m + 1][n + 1]; for (int j = 0; j <= n; ++j) { f[0][j] = j; } for (int i = 1; i <= m; ++i) { f[i][0] = i; for (int j = 1; j <= n; ++j) { if (word1[i - 1] == word2[j - 1]) { f[i][j] = f[i - 1][j - 1]; } else { f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1; } } } return f[m][n]; } };
-
class Solution: def minDistance(self, word1: str, word2: str) -> int: m, n = len(word1), len(word2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): dp[i][0] = i for j in range(n + 1): dp[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): if word1[i - 1] == word2[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: # dp[i - 1][j - 1]) meaning replace. # e.g. "abc" and "bf", checking "ab" and "b" distance, # then replace either way for "c" or "f" dp[i][j] = 1 + min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) return dp[-1][-1] ############ class Solution: def minDistance(self, word1: str, word2: str) -> int: m, n = len(word1), len(word2) f = [[0] * (n + 1) for _ in range(m + 1)] for j in range(1, n + 1): f[0][j] = j for i, a in enumerate(word1, 1): f[i][0] = i # merged for loops from above solution, but not good for readability for j, b in enumerate(word2, 1): if a == b: f[i][j] = f[i - 1][j - 1] else: f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1 return f[m][n]
-
func minDistance(word1 string, word2 string) int { m, n := len(word1), len(word2) f := make([][]int, m+1) for i := range f { f[i] = make([]int, n+1) } for j := 1; j <= n; j++ { f[0][j] = j } for i := 1; i <= m; i++ { f[i][0] = i for j := 1; j <= n; j++ { if word1[i-1] == word2[j-1] { f[i][j] = f[i-1][j-1] } else { f[i][j] = min(f[i-1][j], min(f[i][j-1], f[i-1][j-1])) + 1 } } } return f[m][n] }
-
function minDistance(word1: string, word2: string): number { const m = word1.length; const n = word2.length; const f: number[][] = Array(m + 1) .fill(0) .map(() => Array(n + 1).fill(0)); for (let j = 1; j <= n; ++j) { f[0][j] = j; } for (let i = 1; i <= m; ++i) { f[i][0] = i; for (let j = 1; j <= n; ++j) { if (word1[i - 1] === word2[j - 1]) { f[i][j] = f[i - 1][j - 1]; } else { f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1; } } } return f[m][n]; }
-
/** * @param {string} word1 * @param {string} word2 * @return {number} */ var minDistance = function (word1, word2) { const m = word1.length; const n = word2.length; const f = Array(m + 1) .fill(0) .map(() => Array(n + 1).fill(0)); for (let j = 1; j <= n; ++j) { f[0][j] = j; } for (let i = 1; i <= m; ++i) { f[i][0] = i; for (let j = 1; j <= n; ++j) { if (word1[i - 1] === word2[j - 1]) { f[i][j] = f[i - 1][j - 1]; } else { f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1; } } } return f[m][n]; };