Welcome to Subscribe On Youtube

64. Minimum Path Sum

Description

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

 

Example 1:

Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.

Example 2:

Input: grid = [[1,2,3],[4,5,6]]
Output: 12

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

Solutions

Solution 1: Dynamic Programming

We define $f[i][j]$ to represent the minimum path sum from the top left corner to $(i, j)$. Initially, $f[0][0] = grid[0][0]$, and the answer is $f[m - 1][n - 1]$.

Consider $f[i][j]$:

  • If $j = 0$, then $f[i][j] = f[i - 1][j] + grid[i][j]$;
  • If $i = 0$, then $f[i][j] = f[i][j - 1] + grid[i][j]$;
  • If $i > 0$ and $j > 0$, then $f[i][j] = \min(f[i - 1][j], f[i][j - 1]) + grid[i][j]$.

Finally, return $f[m - 1][n - 1]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the grid, respectively.

  • class Solution {
        public int minPathSum(int[][] grid) {
            int m = grid.length, n = grid[0].length;
            int[][] f = new int[m][n];
            f[0][0] = grid[0][0];
            for (int i = 1; i < m; ++i) {
                f[i][0] = f[i - 1][0] + grid[i][0];
            }
            for (int j = 1; j < n; ++j) {
                f[0][j] = f[0][j - 1] + grid[0][j];
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
                }
            }
            return f[m - 1][n - 1];
        }
    }
    
  • class Solution {
    public:
        int minPathSum(vector<vector<int>>& grid) {
            int m = grid.size(), n = grid[0].size();
            int f[m][n];
            f[0][0] = grid[0][0];
            for (int i = 1; i < m; ++i) {
                f[i][0] = f[i - 1][0] + grid[i][0];
            }
            for (int j = 1; j < n; ++j) {
                f[0][j] = f[0][j - 1] + grid[0][j];
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
                }
            }
            return f[m - 1][n - 1];
        }
    };
    
  • class Solution:
        def minPathSum(self, grid: List[List[int]]) -> int:
            m, n = len(grid), len(grid[0])
            f = [[0] * n for _ in range(m)]
            f[0][0] = grid[0][0]
            for i in range(1, m):
                f[i][0] = f[i - 1][0] + grid[i][0]
            for j in range(1, n):
                f[0][j] = f[0][j - 1] + grid[0][j]
            for i in range(1, m):
                for j in range(1, n):
                    f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j]
            return f[-1][-1]
    
    
  • func minPathSum(grid [][]int) int {
    	m, n := len(grid), len(grid[0])
    	f := make([][]int, m)
    	for i := range f {
    		f[i] = make([]int, n)
    	}
    	f[0][0] = grid[0][0]
    	for i := 1; i < m; i++ {
    		f[i][0] = f[i-1][0] + grid[i][0]
    	}
    	for j := 1; j < n; j++ {
    		f[0][j] = f[0][j-1] + grid[0][j]
    	}
    	for i := 1; i < m; i++ {
    		for j := 1; j < n; j++ {
    			f[i][j] = min(f[i-1][j], f[i][j-1]) + grid[i][j]
    		}
    	}
    	return f[m-1][n-1]
    }
    
  • function minPathSum(grid: number[][]): number {
        const m = grid.length;
        const n = grid[0].length;
        const f: number[][] = Array(m)
            .fill(0)
            .map(() => Array(n).fill(0));
        f[0][0] = grid[0][0];
        for (let i = 1; i < m; ++i) {
            f[i][0] = f[i - 1][0] + grid[i][0];
        }
        for (let j = 1; j < n; ++j) {
            f[0][j] = f[0][j - 1] + grid[0][j];
        }
        for (let i = 1; i < m; ++i) {
            for (let j = 1; j < n; ++j) {
                f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
            }
        }
        return f[m - 1][n - 1];
    }
    
    
  • /**
     * @param {number[][]} grid
     * @return {number}
     */
    var minPathSum = function (grid) {
        const m = grid.length;
        const n = grid[0].length;
        const f = Array(m)
            .fill(0)
            .map(() => Array(n).fill(0));
        f[0][0] = grid[0][0];
        for (let i = 1; i < m; ++i) {
            f[i][0] = f[i - 1][0] + grid[i][0];
        }
        for (let j = 1; j < n; ++j) {
            f[0][j] = f[0][j - 1] + grid[0][j];
        }
        for (let i = 1; i < m; ++i) {
            for (let j = 1; j < n; ++j) {
                f[i][j] = Math.min(f[i - 1][j], f[i][j - 1]) + grid[i][j];
            }
        }
        return f[m - 1][n - 1];
    };
    
    
  • public class Solution {
        public int MinPathSum(int[][] grid) {
            int m = grid.Length, n = grid[0].Length;
            int[,] f = new int[m, n];
            f[0, 0] = grid[0][0];
            for (int i = 1; i < m; ++i) {
                f[i, 0] = f[i - 1, 0] + grid[i][0];
            }
            for (int j = 1; j < n; ++j) {
                f[0, j] = f[0, j - 1] + grid[0][j];
            }
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j < n; ++j) {
                    f[i, j] = Math.Min(f[i - 1, j], f[i, j - 1]) + grid[i][j];
                }
            }
            return f[m - 1, n - 1];
        }
    }
    
  • impl Solution {
        pub fn min_path_sum(mut grid: Vec<Vec<i32>>) -> i32 {
            let m = grid.len();
            let n = grid[0].len();
            for i in 1..m {
                grid[i][0] += grid[i - 1][0];
            }
            for i in 1..n {
                grid[0][i] += grid[0][i - 1];
            }
            for i in 1..m {
                for j in 1..n {
                    grid[i][j] += grid[i][j - 1].min(grid[i - 1][j]);
                }
            }
            grid[m - 1][n - 1]
        }
    }
    
    

All Problems

All Solutions