Welcome to Subscribe On Youtube

50. Pow(x, n)

Description

Implement pow(x, n), which calculates x raised to the power n (i.e., xn).

 

Example 1:

Input: x = 2.00000, n = 10
Output: 1024.00000

Example 2:

Input: x = 2.10000, n = 3
Output: 9.26100

Example 3:

Input: x = 2.00000, n = -2
Output: 0.25000
Explanation: 2-2 = 1/22 = 1/4 = 0.25

 

Constraints:

  • -100.0 < x < 100.0
  • -231 <= n <= 231-1
  • n is an integer.
  • Either x is not zero or n > 0.
  • -104 <= xn <= 104

Solutions

Solution 1: Mathematics (Fast Powering)

The core idea of the fast powering algorithm is to decompose the exponent $n$ into the sum of $1$s on several binary bits, and then transform the $n$th power of $x$ into the product of several powers of $x$.

The time complexity is $O(\log n)$, and the space complexity is $O(1)$. Here, $n$ is the exponent.

  • class Solution {
        public double myPow(double x, int n) {
            return n >= 0 ? qpow(x, n) : 1 / qpow(x, -(long) n);
        }
    
        private double qpow(double a, long n) {
            double ans = 1;
            for (; n > 0; n >>= 1) {
                if ((n & 1) == 1) {
                    ans = ans * a;
                }
                a = a * a;
            }
            return ans;
        }
    }
    
  • class Solution {
    public:
        double myPow(double x, int n) {
            auto qpow = [](double a, long long n) {
                double ans = 1;
                for (; n; n >>= 1) {
                    if (n & 1) {
                        ans *= a;
                    }
                    a *= a;
                }
                return ans;
            };
            return n >= 0 ? qpow(x, n) : 1 / qpow(x, -(long long) n);
        }
    };
    
  • class Solution:
        def myPow(self, x: float, n: int) -> float:
            def qpow(a: float, n: int) -> float:
                ans = 1
                while n:
                    if n & 1:
                        ans *= a
                    a *= a
                    n >>= 1
                return ans
    
            return qpow(x, n) if n >= 0 else 1 / qpow(x, -n)
    
    
  • func myPow(x float64, n int) float64 {
    	qpow := func(a float64, n int) float64 {
    		ans := 1.0
    		for ; n > 0; n >>= 1 {
    			if n&1 == 1 {
    				ans *= a
    			}
    			a *= a
    		}
    		return ans
    	}
    	if n >= 0 {
    		return qpow(x, n)
    	}
    	return 1 / qpow(x, -n)
    }
    
  • function myPow(x: number, n: number): number {
        const qpow = (a: number, n: number): number => {
            let ans = 1;
            for (; n; n >>>= 1) {
                if (n & 1) {
                    ans *= a;
                }
                a *= a;
            }
            return ans;
        };
        return n >= 0 ? qpow(x, n) : 1 / qpow(x, -n);
    }
    
    
  • /**
     * @param {number} x
     * @param {number} n
     * @return {number}
     */
    var myPow = function (x, n) {
        const qpow = (a, n) => {
            let ans = 1;
            for (; n; n >>>= 1) {
                if (n & 1) {
                    ans *= a;
                }
                a *= a;
            }
            return ans;
        };
        return n >= 0 ? qpow(x, n) : 1 / qpow(x, -n);
    };
    
    
  • public class Solution {
        public double MyPow(double x, int n) {
            return n >= 0 ? qpow(x, n) : 1.0 / qpow(x, -(long)n);
        }
    
        private double qpow(double a, long n) {
            double ans = 1;
            for (; n > 0; n >>= 1) {
                if ((n & 1) == 1) {
                    ans *= a;
                }
                a *= a;
            }
            return ans;
        }
    }
    
  • impl Solution {
        #[allow(dead_code)]
        pub fn my_pow(x: f64, n: i32) -> f64 {
            let mut x = x;
            let n = n as i64;
            if n >= 0 {
                Self::quick_pow(&mut x, n)
            } else {
                1.0 / Self::quick_pow(&mut x, -n)
            }
        }
    
        #[allow(dead_code)]
        fn quick_pow(x: &mut f64, mut n: i64) -> f64 {
            // `n` should greater or equal to zero
            let mut ret = 1.0;
            while n != 0 {
                if (n & 0x1) == 1 {
                    ret *= *x;
                }
                *x *= *x;
                n >>= 1;
            }
            ret
        }
    }
    
    

All Problems

All Solutions