Welcome to Subscribe On Youtube

44. Wildcard Matching

Description

Given an input string (s) and a pattern (p), implement wildcard pattern matching with support for '?' and '*' where:

  • '?' Matches any single character.
  • '*' Matches any sequence of characters (including the empty sequence).

The matching should cover the entire input string (not partial).

 

Example 1:

Input: s = "aa", p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

Input: s = "aa", p = "*"
Output: true
Explanation: '*' matches any sequence.

Example 3:

Input: s = "cb", p = "?a"
Output: false
Explanation: '?' matches 'c', but the second letter is 'a', which does not match 'b'.

 

Constraints:

  • 0 <= s.length, p.length <= 2000
  • s contains only lowercase English letters.
  • p contains only lowercase English letters, '?' or '*'.

Solutions

Solution 1: Dynamic Programming

We define the state $dp[i][j]$ to represent whether the first $i$ characters of $s$ match the first $j$ characters of $p$.

The state transition equation is as follows:

\[dp[i][j]= \begin{cases} dp[i-1][j-1] & \text{if } s[i-1]=p[j-1] \text{ or } p[j-1]=\text{?} \\ dp[i-1][j-1] \lor dp[i-1][j] \lor dp[i][j-1] & \text{if } p[j-1]=\text{*} \\ \text{false} & \text{otherwise} \end{cases}\]

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the lengths of $s$ and $p$ respectively.

  • class Solution {
        public boolean isMatch(String s, String p) {
            int m = s.length(), n = p.length();
            boolean[][] dp = new boolean[m + 1][n + 1];
            dp[0][0] = true;
            for (int j = 1; j <= n; ++j) {
                if (p.charAt(j - 1) == '*') {
                    dp[0][j] = dp[0][j - 1];
                }
            }
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    if (s.charAt(i - 1) == p.charAt(j - 1) || p.charAt(j - 1) == '?') {
                        dp[i][j] = dp[i - 1][j - 1];
                    } else if (p.charAt(j - 1) == '*') {
                        dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
                    }
                }
            }
            return dp[m][n];
        }
    }
    
  • class Solution {
    public:
        bool isMatch(string s, string p) {
            int m = s.size(), n = p.size();
            vector<vector<bool>> dp(m + 1, vector<bool>(n + 1));
            dp[0][0] = true;
            for (int j = 1; j <= n; ++j) {
                if (p[j - 1] == '*') {
                    dp[0][j] = dp[0][j - 1];
                }
            }
            for (int i = 1; i <= m; ++i) {
                for (int j = 1; j <= n; ++j) {
                    if (s[i - 1] == p[j - 1] || p[j - 1] == '?') {
                        dp[i][j] = dp[i - 1][j - 1];
                    } else if (p[j - 1] == '*') {
                        dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
                    }
                }
            }
            return dp[m][n];
        }
    };
    
  • class Solution:
        def isMatch(self, s: str, p: str) -> bool:
            m, n = len(s), len(p)
            dp = [[False] * (n + 1) for _ in range(m + 1)]
            dp[0][0] = True
    
            # if p starting with "*", then all true for dp[0][i]
            # or else, all false for dp[0][i]
            for j in range(1, n + 1):
                if p[j - 1] == '*':
                    dp[0][j] = dp[0][j - 1]
    
            for i in range(1, m + 1):
                for j in range(1, n + 1):
                    if s[i - 1] == p[j - 1] or p[j - 1] == '?':
                        dp[i][j] = dp[i - 1][j - 1]
                    # dp[i - 1][j], where j is always '*', all the way back to i-1==0
                    elif p[j - 1] == '*':
                        dp[i][j] = dp[i - 1][j] or dp[i][j - 1]
            return dp[m][n]
    
    
  • func isMatch(s string, p string) bool {
    	m, n := len(s), len(p)
    	dp := make([][]bool, m+1)
    	for i := range dp {
    		dp[i] = make([]bool, n+1)
    	}
    	dp[0][0] = true
    	for j := 1; j <= n; j++ {
    		if p[j-1] == '*' {
    			dp[0][j] = dp[0][j-1]
    		}
    	}
    	for i := 1; i <= m; i++ {
    		for j := 1; j <= n; j++ {
    			if s[i-1] == p[j-1] || p[j-1] == '?' {
    				dp[i][j] = dp[i-1][j-1]
    			} else if p[j-1] == '*' {
    				dp[i][j] = dp[i-1][j] || dp[i][j-1]
    			}
    		}
    	}
    	return dp[m][n]
    }
    
  • using System.Linq;
    
    public class Solution {
        public bool IsMatch(string s, string p) {
            if (p.Count(ch => ch != '*') > s.Length)
            {
                return false;
            }
            
            bool[,] f = new bool[s.Length + 1, p.Length + 1];
            bool[] d = new bool[s.Length + 1]; // d[i] means f[0, j] || f[1, j] || ... || f[i, j]
            for (var j = 0; j <= p.Length; ++j)
            {
                d[0] = j == 0 ? true : d[0] && p[j - 1] == '*';
                for (var i = 0; i <= s.Length; ++i)
                {
                    if (j == 0)
                    {
                        f[i, j] = i == 0;
                        continue;
                    }
                    
                    if (p[j - 1] == '*')
                    {
                        if (i > 0)
                        {
                            d[i] = f[i, j - 1] || d[i - 1];
                        }
                        f[i, j] = d[i];
                    }
                    else if (p[j - 1] == '?')
                    {
                        f[i, j] = i > 0 && f[i - 1, j - 1];
                    }
                    else
                    {
                        f[i, j] = i > 0 && f[i - 1, j - 1] && s[i - 1] == p[j - 1];
                    }
                }
            }
            return f[s.Length, p.Length];
        }
    }
    
  • function isMatch(s: string, p: string): boolean {
        const m = s.length;
        const n = p.length;
        const f: number[][] = Array.from({ length: m + 1 }, () =>
            Array.from({ length: n + 1 }, () => -1),
        );
        const dfs = (i: number, j: number): boolean => {
            if (i >= m) {
                return j >= n || (p[j] === '*' && dfs(i, j + 1));
            }
            if (j >= n) {
                return false;
            }
            if (f[i][j] !== -1) {
                return f[i][j] === 1;
            }
            if (p[j] === '*') {
                f[i][j] = dfs(i + 1, j) || dfs(i, j + 1) ? 1 : 0;
            } else {
                f[i][j] = (p[j] === '?' || s[i] === p[j]) && dfs(i + 1, j + 1) ? 1 : 0;
            }
            return f[i][j] === 1;
        };
        return dfs(0, 0);
    }
    
    
  • class Solution {
        /**
         * @param string $s
         * @param string $p
         * @return boolean
         */
    
        function isMatch($s, $p) {
            $lengthS = strlen($s);
            $lengthP = strlen($p);
            $dp = array();
            for ($i = 0; $i <= $lengthS; $i++) {
                $dp[$i] = array_fill(0, $lengthP + 1, false);
            }
            $dp[0][0] = true;
    
            for ($i = 1; $i <= $lengthP; $i++) {
                if ($p[$i - 1] == '*') {
                    $dp[0][$i] = $dp[0][$i - 1];
                }
            }
            for ($i = 1; $i <= $lengthS; $i++) {
                for ($j = 1; $j <= $lengthP; $j++) {
                    if ($p[$j - 1] == '?' || $s[$i - 1] == $p[$j - 1]) {
                        $dp[$i][$j] = $dp[$i - 1][$j - 1];
                    } else if ($p[$j - 1] == '*') {
                        $dp[$i][$j] = $dp[$i][$j - 1] || $dp[$i - 1][$j];
                    }
                }
            }
            return $dp[$lengthS][$lengthP];
        }
    }
    
    

All Problems

All Solutions