Welcome to Subscribe On Youtube
Question
Formatted question description: https://leetcode.ca/all/40.html
Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sum to target
.
Each number in candidates
may only be used once in the combination.
Note: The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8 Output: [ [1,1,6], [1,2,5], [1,7], [2,6] ]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5 Output: [ [1,2,2], [5] ]
Constraints:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
Algorithm
Based on Combination_Sum_I, add sorting to move duplicated numbers together and skip.
Code
-
import java.util.ArrayList; import java.util.Arrays; import java.util.List; public class Combination_Sum_II { class Solution { List<List<Integer>> result = new ArrayList<>(); public List<List<Integer>> combinationSum2(int[] candidates, int target) { if (candidates == null || candidates.length == 0) { return result; } // nlogn Arrays.sort(candidates); dfs(candidates, target, 0, new ArrayList<Integer>()); return result; } private void dfs(int[] candidates, int target, int start, ArrayList<Integer> onePath) { if (target < 0) { // target<0, assumption is all positive return; } if (target == 0) { result.add(new ArrayList<>(onePath)); // continue, and possible 1,-1 are next ones } for (int i = start; i < candidates.length; i++) { if (i > start && candidates[i] == candidates[i - 1]) continue; onePath.add(candidates[i]); dfs(candidates, target - candidates[i], i+1, onePath); // i+1, to use only once onePath.remove(onePath.size() - 1); } } } // https://leetcode.com/problems/combination-sum-ii/solution/ // official solution got "Time Limit Exceeded" error, funny but still a good idea solving this problem class Solution_lc { public List<List<Integer>> combinationSum2(int[] candidates, int target) { // container to hold the final combinations List<List<Integer>> results = new ArrayList<>(); LinkedList<Integer> comb = new LinkedList<>(); HashMap<Integer, Integer> counter = new HashMap<>(); for (int candidate : candidates) { if (counter.containsKey(candidate)) counter.put(candidate, counter.get(candidate) + 1); else counter.put(candidate, 1); } // convert the counter table to a list of (num, count) tuples List<int[]> counterList = new ArrayList<>(); counter.forEach((key, value) -> { counterList.add(new int[]{key, value}); }); backtrack(comb, target, 0, counterList, results); return results; } private void backtrack(LinkedList<Integer> comb, int remain, int curr, List<int[]> counter, List<List<Integer>> results) { if (remain == 0) { // make a deep copy of the current combination. results.add(new ArrayList<Integer>(comb)); return; } for (int nextCurr = curr; nextCurr < counter.size(); ++nextCurr) { int[] entry = counter.get(nextCurr); Integer candidate = entry[0], freq = entry[1]; if (freq <= 0) continue; // add a new element to the current combination comb.addLast(candidate); counter.set(nextCurr, new int[]{candidate, freq - 1}); // continue the exploration with the updated combination backtrack(comb, remain - candidate, nextCurr, counter, results); // backtrack the changes, so that we can try another candidate counter.set(nextCurr, new int[]{candidate, freq}); comb.removeLast(); } } } } ############ class Solution { private List<List<Integer>> ans = new ArrayList<>(); private List<Integer> t = new ArrayList<>(); private int[] candidates; private int target; public List<List<Integer>> combinationSum2(int[] candidates, int target) { Arrays.sort(candidates); this.target = target; this.candidates = candidates; dfs(0, 0); return ans; } private void dfs(int i, int s) { if (s > target) { return; } if (s == target) { ans.add(new ArrayList<>(t)); return; } for (int j = i; j < candidates.length; ++j) { if (j > i && candidates[j] == candidates[j - 1]) { continue; } t.add(candidates[j]); dfs(j + 1, s + candidates[j]); t.remove(t.size() - 1); } } }
-
// OJ: https://leetcode.com/problems/combination-sum-ii/ // Time: O(N^2) // Space: O(N) class Solution { vector<vector<int>> ans; void dfs(vector<int> &A, int target, int start, vector<int> &tmp) { if (!target) { ans.push_back(tmp); return; } for (int i = start; i < A.size() && target >= A[i]; ++i) { if (i != start && A[i] == A[i - 1]) continue; tmp.push_back(A[i]); dfs(A, target - A[i], i + 1, tmp); tmp.pop_back(); } } public: vector<vector<int>> combinationSum2(vector<int>& A, int target) { sort(A.begin(), A.end()); vector<int> tmp; dfs(A, target, 0, tmp); return ans; } };
-
class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: def dfs(i, s): if s > target: return if s == target: ans.append(t.copy()) return for j in range(i, len(candidates)): if j > i and candidates[j] == candidates[j - 1]: continue t.append(candidates[j]) dfs(j + 1, s + candidates[j]) t.pop() ans = [] candidates.sort() t = [] dfs(0, 0) return ans ############ class Solution(object): def combinationSum2(self, candidates, target): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ def dfs(nums, target, start, visited, path, res): if target == 0: res.append(path + []) return for i in range(start, len(nums)): if i > start and nums[i] == nums[i - 1]: continue if target - nums[i] < 0: return 0 if i not in visited: visited.add(i) path.append(nums[i]) dfs(nums, target - nums[i], i + 1, visited, path, res) path.pop() visited.discard(i) candidates.sort() res = [] visited = set([]) dfs(candidates, target, 0, visited, [], res) return res
-
func combinationSum2(candidates []int, target int) (ans [][]int) { sort.Ints(candidates) t := []int{} var dfs func(i, s int) dfs = func(i, s int) { if s > target { return } if s == target { cp := make([]int, len(t)) copy(cp, t) ans = append(ans, cp) return } for j := i; j < len(candidates); j++ { if j > i && candidates[j] == candidates[j-1] { continue } t = append(t, candidates[j]) dfs(j+1, s+candidates[j]) t = t[:len(t)-1] } } dfs(0, 0) return }
-
function combinationSum2(candidates: number[], target: number): number[][] { candidates.sort((a, b) => a - b); const n = candidates.length; const t: number[] = []; const res: number[][] = []; const dfs = (i: number, sum: number) => { if (sum > target) { return; } if (sum === target) { res.push([...t]); return; } for (let j = i; j < n; j++) { const num = candidates[j]; if (j > i && num === candidates[j - 1]) { continue; } t.push(num); dfs(j + 1, sum + num); t.pop(); } }; dfs(0, 0); return res; }
-
/** * @param {number[]} candidates * @param {number} target * @return {number[][]} */ var combinationSum2 = function (candidates, target) { candidates.sort((a, b) => a - b); const n = candidates.length; const t = []; const ans = []; const dfs = (i, s) => { if (s > target) { return; } if (s === target) { ans.push([...t]); return; } for (let j = i; j < n; j++) { const num = candidates[j]; if (j > i && num === candidates[j - 1]) { continue; } t.push(num); dfs(j + 1, s + num); t.pop(); } }; dfs(0, 0); return ans; };
-
public class Solution { public IList<IList<int>> CombinationSum2(int[] candidates, int target) { Array.Sort(candidates); var ans = new List<IList<int>>(); var t = new List<int>(); dfs(candidates, 0, 0, target, t, ans); return ans; } private void dfs(int[] candidates, int i, int s, int target, IList<int> t, IList<IList<int>> ans) { if (s > target) { return; } if (s == target) { ans.Add(new List<int>(t)); return; } for (int j = i; j < candidates.Length; ++j) { if (j > i && candidates[j] == candidates[j - 1]) { continue; } t.Add(candidates[j]); dfs(candidates, j + 1, s + candidates[j], target, t, ans); t.RemoveAt(t.Count - 1); } } }
-
impl Solution { fn dfs(i: usize, count: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, res: &mut Vec<Vec<i32>>) { if count < 0 { return; } if count == 0 { res.push(t.clone()); return; } for j in i..candidates.len() { if j > i && candidates[j] == candidates[j - 1] { continue; } let num = candidates[j]; t.push(num); Self::dfs(j + 1, count - num, candidates, t, res); t.pop(); } } pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> { candidates.sort(); let mut res = Vec::new(); Self::dfs(0, target, &candidates, &mut vec![], &mut res); res } }