Welcome to Subscribe On Youtube

Question

Formatted question description: https://leetcode.ca/all/40.html

Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sum to target.

Each number in candidates may only be used once in the combination.

Note: The solution set must not contain duplicate combinations.

 

Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8
Output: 
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

Example 2:

Input: candidates = [2,5,2,1,2], target = 5
Output: 
[
[1,2,2],
[5]
]

 

Constraints:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

Algorithm

Based on Combination_Sum_I, add sorting to move duplicated numbers together and skip.

Code

  • import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.List;
    
    
    public class Combination_Sum_II {
    
        class Solution {
    
            List<List<Integer>> result = new ArrayList<>();
    
            public List<List<Integer>> combinationSum2(int[] candidates, int target) {
                if (candidates == null || candidates.length == 0) {
                    return result;
                }
    
                // nlogn
                Arrays.sort(candidates);
    
    
                dfs(candidates, target, 0, new ArrayList<Integer>());
    
                return result;
            }
    
            private void dfs(int[] candidates, int target, int start, ArrayList<Integer> onePath) {
    
                if (target < 0) { // target<0, assumption is all positive
                    return;
                }
    
                if (target == 0) {
                    result.add(new ArrayList<>(onePath));
                    // continue, and possible 1,-1 are next ones
                }
    
                for (int i = start; i < candidates.length; i++) {
                    if (i > start && candidates[i] == candidates[i - 1]) continue;
                    onePath.add(candidates[i]);
                    dfs(candidates, target - candidates[i], i+1, onePath); // i+1, to use only once
                    onePath.remove(onePath.size() - 1);
                }
            }
        }
    
        // https://leetcode.com/problems/combination-sum-ii/solution/
        // official solution got "Time Limit Exceeded" error, funny but still a good idea solving this problem
        class Solution_lc {
            public List<List<Integer>> combinationSum2(int[] candidates, int target) {
                // container to hold the final combinations
                List<List<Integer>> results = new ArrayList<>();
                LinkedList<Integer> comb = new LinkedList<>();
    
                HashMap<Integer, Integer> counter = new HashMap<>();
                for (int candidate : candidates) {
                    if (counter.containsKey(candidate))
                        counter.put(candidate, counter.get(candidate) + 1);
                    else
                        counter.put(candidate, 1);
                }
    
                // convert the counter table to a list of (num, count) tuples
                List<int[]> counterList = new ArrayList<>();
                counter.forEach((key, value) -> {
                    counterList.add(new int[]{key, value});
                });
    
                backtrack(comb, target, 0, counterList, results);
                return results;
            }
    
            private void backtrack(LinkedList<Integer> comb,
                                   int remain, int curr,
                                   List<int[]> counter,
                                   List<List<Integer>> results) {
    
                if (remain == 0) {
                    // make a deep copy of the current combination.
                    results.add(new ArrayList<Integer>(comb));
                    return;
                }
    
                for (int nextCurr = curr; nextCurr < counter.size(); ++nextCurr) {
                    int[] entry = counter.get(nextCurr);
                    Integer candidate = entry[0], freq = entry[1];
    
                    if (freq <= 0)
                        continue;
    
                    // add a new element to the current combination
                    comb.addLast(candidate);
                    counter.set(nextCurr, new int[]{candidate, freq - 1});
    
                    // continue the exploration with the updated combination
                    backtrack(comb, remain - candidate, nextCurr, counter, results);
    
                    // backtrack the changes, so that we can try another candidate
                    counter.set(nextCurr, new int[]{candidate, freq});
                    comb.removeLast();
                }
            }
        }
    }
    
    ############
    
    class Solution {
        private List<List<Integer>> ans = new ArrayList<>();
        private List<Integer> t = new ArrayList<>();
        private int[] candidates;
        private int target;
    
        public List<List<Integer>> combinationSum2(int[] candidates, int target) {
            Arrays.sort(candidates);
            this.target = target;
            this.candidates = candidates;
            dfs(0, 0);
            return ans;
        }
    
        private void dfs(int i, int s) {
            if (s > target) {
                return;
            }
            if (s == target) {
                ans.add(new ArrayList<>(t));
                return;
            }
            for (int j = i; j < candidates.length; ++j) {
                if (j > i && candidates[j] == candidates[j - 1]) {
                    continue;
                }
                t.add(candidates[j]);
                dfs(j + 1, s + candidates[j]);
                t.remove(t.size() - 1);
            }
        }
    }
    
  • // OJ: https://leetcode.com/problems/combination-sum-ii/
    // Time: O(N^2)
    // Space: O(N)
    class Solution {
        vector<vector<int>> ans;
        void dfs(vector<int> &A, int target, int start, vector<int> &tmp) {
            if (!target) {
                ans.push_back(tmp);
                return;
            }
            for (int i = start; i < A.size() && target >= A[i]; ++i) {
                if (i != start && A[i] == A[i - 1]) continue;
                tmp.push_back(A[i]);
                dfs(A, target - A[i], i + 1, tmp);
                tmp.pop_back();
            }
        }
    public:
        vector<vector<int>> combinationSum2(vector<int>& A, int target) {
            sort(A.begin(), A.end());
            vector<int> tmp;
            dfs(A, target, 0, tmp);
            return ans;
        }
    };
    
  • class Solution:
        def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
            def dfs(i, s):
                if s > target:
                    return
                if s == target:
                    ans.append(t.copy())
                    return
                for j in range(i, len(candidates)):
                    if j > i and candidates[j] == candidates[j - 1]:
                        continue
                    t.append(candidates[j])
                    dfs(j + 1, s + candidates[j])
                    t.pop()
    
            ans = []
            candidates.sort()
            t = []
            dfs(0, 0)
            return ans
    
    ############
    
    class Solution(object):
      def combinationSum2(self, candidates, target):
        """
        :type candidates: List[int]
        :type target: int
        :rtype: List[List[int]]
        """
    
        def dfs(nums, target, start, visited, path, res):
          if target == 0:
            res.append(path + [])
            return
    
          for i in range(start, len(nums)):
            if i > start and nums[i] == nums[i - 1]:
              continue
            if target - nums[i] < 0:
              return 0
            if i not in visited:
              visited.add(i)
              path.append(nums[i])
              dfs(nums, target - nums[i], i + 1, visited, path, res)
              path.pop()
              visited.discard(i)
    
        candidates.sort()
        res = []
        visited = set([])
        dfs(candidates, target, 0, visited, [], res)
        return res
    
    
  • func combinationSum2(candidates []int, target int) (ans [][]int) {
    	sort.Ints(candidates)
    	t := []int{}
    	var dfs func(i, s int)
    	dfs = func(i, s int) {
    		if s > target {
    			return
    		}
    		if s == target {
    			cp := make([]int, len(t))
    			copy(cp, t)
    			ans = append(ans, cp)
    			return
    		}
    		for j := i; j < len(candidates); j++ {
    			if j > i && candidates[j] == candidates[j-1] {
    				continue
    			}
    			t = append(t, candidates[j])
    			dfs(j+1, s+candidates[j])
    			t = t[:len(t)-1]
    		}
    	}
    	dfs(0, 0)
    	return
    }
    
  • function combinationSum2(candidates: number[], target: number): number[][] {
        candidates.sort((a, b) => a - b);
        const n = candidates.length;
        const t: number[] = [];
        const res: number[][] = [];
        const dfs = (i: number, sum: number) => {
            if (sum > target) {
                return;
            }
            if (sum === target) {
                res.push([...t]);
                return;
            }
            for (let j = i; j < n; j++) {
                const num = candidates[j];
                if (j > i && num === candidates[j - 1]) {
                    continue;
                }
                t.push(num);
                dfs(j + 1, sum + num);
                t.pop();
            }
        };
        dfs(0, 0);
        return res;
    }
    
    
  • /**
     * @param {number[]} candidates
     * @param {number} target
     * @return {number[][]}
     */
    var combinationSum2 = function (candidates, target) {
        candidates.sort((a, b) => a - b);
        const n = candidates.length;
        const t = [];
        const ans = [];
        const dfs = (i, s) => {
            if (s > target) {
                return;
            }
            if (s === target) {
                ans.push([...t]);
                return;
            }
            for (let j = i; j < n; j++) {
                const num = candidates[j];
                if (j > i && num === candidates[j - 1]) {
                    continue;
                }
                t.push(num);
                dfs(j + 1, s + num);
                t.pop();
            }
        };
        dfs(0, 0);
        return ans;
    };
    
    
  • public class Solution {
        public IList<IList<int>> CombinationSum2(int[] candidates, int target) {
            Array.Sort(candidates);
            var ans = new List<IList<int>>();
            var t = new List<int>();
            dfs(candidates, 0, 0, target, t, ans);
            return ans;
        }
    
        private void dfs(int[] candidates, int i, int s, int target, IList<int> t, IList<IList<int>> ans) {
            if (s > target) {
                return;
            }
            if (s == target) {
                ans.Add(new List<int>(t));
                return;
            }
            for (int j = i; j < candidates.Length; ++j) {
                if (j > i && candidates[j] == candidates[j - 1]) {
                    continue;
                }
                t.Add(candidates[j]);
                dfs(candidates, j + 1, s + candidates[j], target, t, ans);
                t.RemoveAt(t.Count - 1);
            }
        }
    }
    
  • impl Solution {
        fn dfs(i: usize, count: i32, candidates: &Vec<i32>, t: &mut Vec<i32>, res: &mut Vec<Vec<i32>>) {
            if count < 0 {
                return;
            }
            if count == 0 {
                res.push(t.clone());
                return;
            }
            for j in i..candidates.len() {
                if j > i && candidates[j] == candidates[j - 1] {
                    continue;
                }
                let num = candidates[j];
                t.push(num);
                Self::dfs(j + 1, count - num, candidates, t, res);
                t.pop();
            }
        }
    
        pub fn combination_sum2(mut candidates: Vec<i32>, target: i32) -> Vec<Vec<i32>> {
            candidates.sort();
            let mut res = Vec::new();
            Self::dfs(0, target, &candidates, &mut vec![], &mut res);
            res
        }
    }
    
    

All Problems

All Solutions