1. Two Sum

Description

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

You can return the answer in any order.

Example 1:

Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].


Example 2:

Input: nums = [3,2,4], target = 6
Output: [1,2]


Example 3:

Input: nums = [3,3], target = 6
Output: [0,1]


Constraints:

• 2 <= nums.length <= 104
• -109 <= nums[i] <= 109
• -109 <= target <= 109
• Only one valid answer exists.

Follow-up: Can you come up with an algorithm that is less than O(n2) time complexity?

Solutions

Solution 1: Hash Table

We can use the hash table $m$ to store the array value and the corresponding subscript.

Traverse the array nums, when you find target - nums[i] in the hash table, it means that the target value is found, and the index of target - nums[i] and $i$ are returned.

The time complexity is $O(n)$ and the space complexity is $O(n)$. Where $n$ is the length of the array nums.

• class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> m = new HashMap<>();
for (int i = 0;; ++i) {
int x = nums[i];
int y = target - x;
if (m.containsKey(y)) {
return new int[] {m.get(y), i};
}
m.put(x, i);
}
}
}

• class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
unordered_map<int, int> m;
for (int i = 0;; ++i) {
int x = nums[i];
int y = target - x;
if (m.count(y)) {
return {m[y], i};
}
m[x] = i;
}
}
};

• class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
m = {}
for i, x in enumerate(nums):
y = target - x
if y in m:
return [m[y], i]
m[x] = i


• func twoSum(nums []int, target int) []int {
m := map[int]int{}
for i := 0; ; i++ {
x := nums[i]
y := target - x
if j, ok := m[y]; ok {
return []int{j, i}
}
m[x] = i
}
}

• function twoSum(nums: number[], target: number): number[] {
const m: Map<number, number> = new Map();

for (let i = 0; ; ++i) {
const x = nums[i];
const y = target - x;

if (m.has(y)) {
return [m.get(y)!, i];
}

m.set(x, i);
}
}


• /**
* @param {number[]} nums
* @param {number} target
* @return {number[]}
*/
var twoSum = function (nums, target) {
const m = new Map();
for (let i = 0; ; ++i) {
const x = nums[i];
const y = target - x;
if (m.has(y)) {
return [m.get(y), i];
}
m.set(x, i);
}
};


• class Solution {
/**
* @param Integer[] $nums * @param Integer$target
* @return Integer[]
*/
function twoSum($nums,$target) {
foreach ($nums as$key => $x) {$y = $target -$x;
if (isset($hashtable[$y])) {
return [$hashtable[$y], $key]; }$hashtable[$x] =$key;
}
}
}

• # @param {Integer[]} nums
# @param {Integer} target
# @return {Integer[]}
def two_sum(nums, target)
nums.each_with_index do |x, idx|
if nums.include? target - x
return [idx, nums.index(target - x)] if nums.index(target - x) != idx
end
next
end
end


• import scala.collection.mutable

object Solution {
def twoSum(nums: Array[Int], target: Int): Array[Int] = {
var map = new mutable.HashMap[Int, Int]()
for (i <- 0 to nums.length) {
if (map.contains(target - nums(i))) {
return Array(map(target - nums(i)), i)
} else {
map += (nums(i) -> i)
}
}
Array(0, 0)
}
}


• public class Solution {
public int[] TwoSum(int[] nums, int target) {
var m = new Dictionary<int, int>();
for (int i = 0, j; ; ++i) {
int x = nums[i];
int y = target - x;
if (m.TryGetValue(y, out j)) {
return new [] {j, i};
}
if (!m.ContainsKey(x)) {
}
}
}
}

• #[
Author: @joe733
]#

import std/enumerate

proc twoSum(nums: seq[int], target: int): seq[int] =
var
bal: int
tdx: int
for idx, val in enumerate(nums):
bal = target - val
if bal in nums:
tdx = nums.find(bal)
if idx != tdx:
return @[idx, tdx]


• use std::collections::HashMap;

impl Solution {
pub fn two_sum(nums: Vec<i32>, target: i32) -> Vec<i32> {
let mut map = HashMap::new();
for (i, item) in nums.iter().enumerate() {
if map.contains_key(item) {
return vec![i as i32, map[item]];
} else {
let x = target - nums[i];
map.insert(x, i as i32);
}
}
unreachable!()
}
}


• class Solution {
func twoSum(_ nums: [Int], _ target: Int) -> [Int] {
var m = [Int: Int]()
var i = 0
while true {
let x = nums[i]
let y = target - nums[i]
if let j = m[target - nums[i]] {
return [j, i]
}
m[nums[i]] = i
i += 1
}
}
}