Given the root of a binary tree, then value v
and depth d
, you need
to add a row of nodes with value v
at the given depth d
. The root
node is at depth 1.
The adding rule is: given a positive integer depth d
, for each NOT null tree
nodes N
in depth d-1
, create two tree nodes with value
v
as N's
left subtree root and right subtree root. And
N's
original left subtree should be the left subtree of the new left
subtree root, its original right subtree should be the right subtree of the new right
subtree root. If depth d
is 1 that means there is no depth d-1 at all, then
create a tree node with value v as the new root of the whole original tree, and the
original tree is the new root's left subtree.
Example 1:
Input: A binary tree as following: 4 / \ 2 6 / \ / 3 1 5 v = 1 d = 2 Output: 4 / \ 1 1 / \ 2 6 / \ / 3 1 5
Example 2:
Input: A binary tree as following: 4 / 2 / \ 3 1 v = 1 d = 3 Output: 4 / 2 / \ 1 1 / \ 3 1
Note: