Given the array nums
consisting of n
positive integers.
You computed the sum of all non-empty continous subarrays from the array and then
sort them in non-decreasing order, creating a new array of n * (n + 1) / 2
numbers.
Return the sum of the numbers from index left
to
index right
(indexed from 1), inclusive, in
the new array. Since the answer can be a huge number return it modulo
10^9 + 7.
Example 1:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 5 Output: 13 Explanation: All subarray sums are 1, 3, 6, 10, 2, 5, 9, 3, 7, 4. After sorting them in non-decreasing order we have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 1 to ri = 5 is 1 + 2 + 3 + 3 + 4 = 13.
Example 2:
Input: nums = [1,2,3,4], n = 4, left = 3, right = 4 Output: 6 Explanation: The given array is the same as example 1. We have the new array [1, 2, 3, 3, 4, 5, 6, 7, 9, 10]. The sum of the numbers from index le = 3 to ri = 4 is 3 + 3 = 6.
Example 3:
Input: nums = [1,2,3,4], n = 4, left = 1, right = 10 Output: 50
Constraints:
1 <= nums.length <= 10^3
nums.length == n
1 <= nums[i] <= 100
1 <= left <= right <= n * (n + 1) / 2