Given an undirected tree consisting of n
vertices numbered from 1
to n
. A frog starts jumping from the vertex 1. In one
second, the frog jumps from its current vertex to another unvisited
vertex if they are directly connected. The frog can not jump back to a visited vertex. In
case the frog can jump to several vertices it jumps randomly to one of them with the
same probability, otherwise, when the frog can not jump to any unvisited vertex it jumps
forever on the same vertex.
The edges of the undirected tree are given in the array edges
,
where edges[i] = [fromi, toi]
means that exists
an edge connecting directly the vertices fromi
and
toi
.
Return the probability that after t
seconds the frog is on the
vertex target
.
Example 1:
Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 2, target = 4 Output: 0.16666666666666666 Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 probability to the vertex 2 after second 1 and then jumping with 1/2 probability to vertex 4 after second 2. Thus the probability for the frog is on the vertex 4 after 2 seconds is 1/3 * 1/2 = 1/6 = 0.16666666666666666.
Example 2:
Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 1, target = 7 Output: 0.3333333333333333 Explanation: The figure above shows the given graph. The frog starts at vertex 1, jumping with 1/3 = 0.3333333333333333 probability to the vertex 7 after second 1.
Example 3:
Input: n = 7, edges = [[1,2],[1,3],[1,7],[2,4],[2,6],[3,5]], t = 20, target = 6 Output: 0.16666666666666666
Constraints:
1 <= n <= 100
edges.length == n-1
edges[i].length == 2
1 <= edges[i][0], edges[i][1] <= n
1 <= t <= 50
1 <= target <= n
10^-5
of the actual value will be accepted as
correct.