Table: Activity
+--------------+---------+ | Column Name | Type | +--------------+---------+ | player_id | int | | device_id | int | | event_date | date | | games_played | int | +--------------+---------+ (player_id, event_date) is the primary key of this table. This table shows the activity of players of some game. Each row is a record of a player who logged in and played a number of games (possibly 0) before logging out on some day using some device.
We define the install date of a player to be the first login day of that player.
We also define day 1 retention of some date X
to be the
number of players whose install date is X
and they logged back
in on the day right after X
, divided by the number of players whose install
date is X
, rounded to 2 decimal places.
Write an SQL query that reports for each install date, the number of players that installed the game on that day and the day 1 retention.
The query result format is in the following example:
Activity table: +-----------+-----------+------------+--------------+ | player_id | device_id | event_date | games_played | +-----------+-----------+------------+--------------+ | 1 | 2 | 2016-03-01 | 5 | | 1 | 2 | 2016-03-02 | 6 | | 2 | 3 | 2017-06-25 | 1 | | 3 | 1 | 2016-03-01 | 0 | | 3 | 4 | 2016-07-03 | 5 | +-----------+-----------+------------+--------------+ Result table: +------------+----------+----------------+ | install_dt | installs | Day1_retention | +------------+----------+----------------+ | 2016-03-01 | 2 | 0.50 | | 2017-06-25 | 1 | 0.00 | +------------+----------+----------------+ Player 1 and 3 installed the game on 2016-03-01 but only player 1 logged back in on 2016-03-02 so the day 1 retention of 2016-03-01 is 1 / 2 = 0.50 Player 2 installed the game on 2017-06-25 but didn't log back in on 2017-06-26 so the day 1 retention of 2017-06-25 is 0 / 1 = 0.00